
1 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Introduction to PGAS (UPC and CAF) and
Hybrid for Multicore Programming

05/19/09, Author:
Rolf Rabenseifner

A full-day tutorial at SC12,
November 12, 2012, Salt Lake City, Utah , USA

Alice Koniges – NERSC, Lawrence Berkeley National Laboratory (LBNL)
Katherine Yelick – University of California, Berkeley and LBNL

Rolf Rabenseifner – High Performance Computing Center Stuttgart (HLRS), Germany
Reinhold Bader – Leibniz Supercomputing Centre (LRZ), Munich/Garching, Germany

David Eder – Lawrence Livermore National Laboratory
Filip Blagojevic, Robert Preissl and Paul Hargrove – Lawrence Berkeley National Laboratory

2 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Outline

•  Basic PGAS concepts (Katherine Yelick)
–  Execution model, memory model, resource mapping, …
–  Standardization efforts, comparison with other paradigms
à Exercise 1 (hello)

•  UPC and CAF basic syntax (Rolf Rabenseifner)
–  Declaration of shared data / coarrays, synchronization
–  Dynamic entities, pointers, allocation
à Exercise 2 (triangular matrix)

•  Advanced synchronization concepts (Reinhold Bader)
–  Locks and split-phase barriers, atomic procedures, collective operations
–  Parallel patterns
à Exercises 3+4 (reduction+heat)

•  Applications, Optimization, and Hybrid Programming (Alice Koniges,
David Eder)
à Exercise 5 (optimization)

•  Appendix

06/15/09, Author:
Rolf Rabenseifner

START
 (# Slides

 - skipped)

• 22

–  35

• 33

–  70

• 35

–  105

• 21
–  126

• 14

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html

3 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Basic PGAS Concepts

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concept
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

o  Trends in hardware
o  Execution model
o  Memory model
o  Run time environments
o  Comparison with other paradigms
o  Standardization efforts
Hands-on session: First UPC and CAF exercise

4 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Moore’s Law with Core Doubling
Rather than Clock Speed

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)
Frequency (MHz)
Power (W)
Perf
Cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, and Krste Asanoviç

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

5 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Concurrency was Part of the
Performance Increase in the Past

Exascale Initiative Steering Committee

and power, resiliency, programming models, memory bandwidth, I/O, …

CM-5

Red Storm

Increased parallelism
allowed a 1000-fold

increase in
performance while the
clock speed increased

by a factor of 40

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

6 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

Question: Can you double concurrency without doubling memory?

Source: IBM

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

7 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Where the Energy Goes

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

Intranode/MPI
Communication

On-chip / CMP
communication

Intranode/SMP
Communication

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

8 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Summary of Hardware Trends

•  All future performance increases will be from concurrency
•  Energy is the key challenge in improving performance
•  Data movement is the most significant component of energy use
•  Memory per floating point unit is shrinking

Programming model requirements
•  Control over layout and locality to minimize data movement
•  Ability to share memory to minimize footprint
•  Massive fine and coarse-grained parallelism

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

9 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Partitioned Global Address Space
(PGAS) Languages

•  Coarray Fortran (CAF)
–  Compilers from Cray, Rice and Intel (more soon)

•  Unified Parallel C (UPC)
–  Compilers from Cray, HP, Berkeley/LBNL, Intrepid (gcc), IBM,

SGI, MTU, and others
•  Titanium (Java based)

–  Compiler from Berkeley

DARPA High Productivity Computer Systems (HPCS) language
project:

•  X10 (based on Java, IBM)
•  Chapel (Cray)
•  Fortress (SUN)

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

10 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Two Parallel Language Questions

•  What is the parallel control model?

•  What is the model for sharing/communication?

 implied synchronization for message passing, not shared memory

data parallel
(single thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

11 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

SPMD Execution Model

•  Single Program Multiple Data (SPMD) execution model
–  Matches hardware resources: static number of threads for static

number of cores è no mapping problem for compiler/runtime
–  Intuitively, a copy of the main function on each processor
–  Similar to most MPI applications

•  A number of threads working independently in a SPMD fashion
–  Number of threads given as program variable, e.g., THREADS
–  Another variable, e.g., MYTHREAD specifies thread index
–  There is some form of global synchronization, e.g., upc_barrier
–  Control flow (branches) are independent – not lock-step

•  UPC, CAF and Titanium: all use a SPMD model
•  HPCS languages: X10, Chapel, and Fortress do not

–  They support dynamic threading and data parallel constructs

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

12 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Data Parallelism – HPF

Real :: A(n,m), B(n,m)

do j = 2, m-1
 do i = 2, n-1
 B(i,j) = ... A(i,j)

 ... A(i-1,j) ... A(i+1,j)
 ... A(i,j-1) ... A(i,j+1)

 end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
 using upper and lower,
 left and right value of A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)

05/19/09, Author:
Rolf Rabenseifner

Edited by Kathy Yelick

•  Data parallel languages use array operations (A = B, etc.) and loops
•  Compiler and runtime map n-way parallelism to p cores
•  Data layouts as in HPF can help with assignment using “owner computes”

•  This mapping problem is one of the challenges in implementing HPF that
does not occur with UPC and CAF

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

13 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

cilk int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x+y);
 }
}

Dynamic Tasking - Cilk

The computation dag and
parallelism unfold dynamically.

processors are virtualized;
no explicit processor number

•  Task parallel languages are typically implemented with shared memory
•  No explicit control over locality; runtime system will schedule related

tasks nearby or on the same core
•  The HPCS languages support these in a PGAS memory model which

yields an interesting and challenging runtime problem

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

14 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Partitioned Global Address Space
(PGAS) Languages

•  Defining PGAS principle: extended memory model
1)  The Global Address Space: a special memory area that allows any

task to read or write memory anywhere in the system
2)  It is Partitioned to allow an efficient implementation of distributed

objects (“symmetric heap”)

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

A distributed object in the global address space Global	

address	
 	

space	

(“shared”)	

Task-­‐	

individual	

(“private”)	

address	
 	

space	

Task	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	

two objects in
private area:

no direct
exchange of

data
is possible x

a statement on any task may
transfer data between shared

objects located on different tasks

a statement executed
on the task hosting the

private entity „x“

local accesses
are fastest

remote access

15 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Two Concepts in the Memory Space

•  Private data: accessible only from a single thread
–  Variable declared inside functions that live on the program stack are

normally private to prevent them from disappearing unexpectedly
•  Shared data: data that is accessible from multiple threads

–  Variables allocated dynamically in the program heap or statically at
global scope may have this property

–  Some languages have both private and shared heaps or static
variables

•  Local pointer or reference: refers to local data
–  Local may be associated with a single thread or a shared memory

node
•  Global pointer or reference (pointer-to-shared): may refer to

“remote” data
–  Remote may mean the data is off-thread or off-node
–  Global references are potentially remote; they may refer to local data

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

16 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Other Programming Models

•  Message Passing Interface (MPI)
–  Library with message passing routines
–  Unforced locality control through separate address spaces

•  OpenMP
–  Language extensions with shared memory worksharing directives
–  Allows shared data structures without locality control

OpenMP UPC CAF MPI

•  UPC / CAF data accesses:
–  Similar to OpenMP but with locality control

•  UPC / CAF worksharing:
–  Similar to MPI

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

17 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Understanding Runtime Behavior
- Berkeley UPC Compiler

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC Compiler
Used by bupc and

gcc-upc

Used by Cray XT
UPC + CAF,

Rice CAF, Chapel,
Titanium, and others

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

18 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC Pointers

•  UPC pointers to shared objects have (conceptually) three fields:
–  thread number
–  local address of block
–  phase (specifies position in the block) so that pointer arithmetic

operations (like ++) move through the array correctly (more on
blocks later)

•  Example implementation

Phase Thread Virtual Address

0 37 38 48 49 63

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

19 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

One-Sided vs Two-Sided
Communication

•  A one-sided put/get message can be handled directly by a
network interface with RDMA support

–  Avoid interrupting the CPU or storing data from CPU (preposts)
•  A two-sided messages needs to be matched with a receive to

identify memory address to put data
–  Offloaded to Network Interface in networks like Quadrics
–  Need to download match tables to interface (from host)
–  Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

20 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1.000 10.000 100.000 1.000.000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"
MPI Flood

R elative	
 B W (GASNet/MPI)

1, 0
1, 2

1, 4
1, 6

1, 8
2, 0

2, 2
2, 4

10 1000 100000 10000000

S i z e 	
 (b y t e s)

•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
•  Half power point (N ½) differs by one order of magnitude
•  This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea"

(u
p

is
 g

oo
d)

NERSC Jacquard
machine with
Opteron processors

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

21 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

GASNet vs MPI Latency on BG/P
Ø Basic PGAS concepts

•  Trends
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

22 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

GASNet vs. MPI Bandwidth on BG/P

•  GASNet outperforms MPI on small to medium messages, especially when
multiple links are used.

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

23 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

o  PGAS implementations
consistently outperform MPI

o  Leveraging communication/
computation overlap yields
best performance
o  More collectives in flight

and more communication
leads to better
performance

o  At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

o  Numbers are getting close to
HPC record
o  Future work to try to beat

the record
0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

24 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

FFT Performance on Cray XT4
• 1024 Cores of the Cray XT4

–  Uses FFTW for local FFTs
–  The larger the problem size the more effective the overlap

G
O
O
D

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

25 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC HPL Performance

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
–  ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
–  UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

•  n = 32000 on a 4x4 process grid
–  ScaLAPACK - 43.34 GFlop/s (block size = 64)
–  UPC - 70.26 GFlop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
Fl

op
/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
Fl

op
/s

MPI/HPL

UPC

• MPI HPL
numbers from
HPCC database

• Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

26 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Support

•  PGAS in general
–  http://en.wikipedia.org/wiki/PGAS
–  http://www.pgas-forum.org/ à PGAS conferences

•  UPC
–  http://en.wikipedia.org/wiki/Unified_Parallel_C
–  http://upc.gwu.edu/ à Main UPC homepage
–  https://upc-wiki.lbl.gov/UPC/ à UPC wiki
–  http://upc.gwu.edu/documentation.html à Language specs
–  http://upc.gwu.edu/download.html à UPC compilers

•  CAF
–  http://en.wikipedia.org/wiki/Co-array_Fortran
–  http://www.co-array.org/ (unmaintained)
–  Part of Fortran 2008
–  Cray and Intel compilers, gfortran in development
–  http://www.g95.org/coarray.shtml (unmaintained)

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

27 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Future developments

•  UPC
–  Version 1.3 will define additional

library functions
–  Feature List:

§  Improved support for lock
deallocation, memory
management, locality control

§  Non-blocking memory block
transfers

§  Atomic Functions

•  CAF
–  A Technical Specification has

been proposed – if accepted,
publication is targeted for 2014
§  TS to be integrated with next

revision of the Fortran Standard
–  Feature List:

§  Collective Functions
§  Atomic Functions
§  One-sided synchronization

(notify/query with events)
§  Composable Teams; includes a

block construct that allows to define
coarrays which only exist on sub-
sets of images, and limits synchroni-
zation effects to the subset

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

will point out how new features fit into the concepts throughout this talk

09/05/12, Author:
R. Bader

FIXME: further
new UPC features

may be missing

28 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC

•  UPC Language Specification (V 1.2)
–  The UPC Consortium, June 2005
–  http://upc.gwu.edu/docs/upc_specs_1.2.pdf

•  UPC Manual
–  Sébastien Chauvin, Proshanta Saha, François Cantonnet, Smita

Annareddy, Tarek El-Ghazawi, May 2005
–  http://upc.gwu.edu/downloads/Manual-1.2.pdf

•  UPC Book
–  Tarek El-Ghazawi, Bill Carlson, Thomas Sterling,

 and Katherine Yelick, June 2005

06/15/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

29 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

CAF

•  On WG5 web site: John Reid:
Co-arrays in the next Fortran Standard
ISO/IEC JTC1/SC22/WG5 N1824 (April 21, 2010)
–  ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

•  Metcalf, Reid and Cohen: Modern Fortran Explained
 OUP 2011, Chapter 19

Older papers:
•  Robert W. Numrich and John Reid:

Co-arrays in the next Fortran Standard
ACM Fortran Forum (2005), 24, 2, 2-24 and WG5 paper ISO/IEC JTC1/SC22/WG5
N1642
–  ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1642.pdf

•  Robert W. Numrich and John Reid:
Co-Array Fortran for parallel programming.
ACM Fortran Forum (1998), 17, 2 (Special Report) and Rutherford Appleton Laboratory
report RAL-TR-1998-060 available as
–  ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf

06/15/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

30 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Programming styles with PGAS

•  Data is partitioned among the processes, i.e., without halos
–  Fine-grained access to the neighbor elements when needed
Ø  Compiler has to implement automatically (and together)

§  pre-fetches
§  bulk data transfer (instead of single-word remote accesses)

Ø  May be very slow if compiler’s optimization fails
•  Application implements halo storage

–  Application organizes halo updates with bulk data transfer
Ø  Advantage: High speed remote accesses
Ø  Drawbacks: Additional memory accesses and storage needs

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

A distributed object in the global address space Global	

address	
 	

space	

(“shared”)	

Task-­‐	

individual	

(“private”)	

address	
 	

space	

Task	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	

31 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Coming from MPI –
what’s different with PGAS?

Real :: A(n,m), B(n,m)
do j = 2, m-1
 do i = 2, n-1
 B(i,j) = ... A(i,j)

 ... A(i-1,j) ... A(i+1,j)
 ... A(i,j-1) ... A(i,j+1)

 end do
end do

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)
 do i = 2, n-1
 B(i,j) = ... A(i,j)

 ... A(i-1,j) ... A(i+1,j)
 ... A(i,j-1) ... A(i,j+1)

 end do
end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

 ! storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
 using upper and lower,
 left and right value of A

Data definition

size = num_images()
myrank = this_image() – 1

! Local halo = remotely computed data
 B(:,jex) = B(:,1)[myrank+1]
 B(:,jax) = B(:,m1)[myrank–1]

! Trick in this program:
! Remote memory access instead of
! MPI send and receive library calls

ja=1; je= m1; ! Same values on all processes

jaloop, jeloop ! Orig.: 2, m-1

ja_loop=1; if(myrank==0) jaloop=2; jeloop=min((myrank+1)*m1,m–1) – myrank*m1;

in original
index range

remove range of
lower processes

05/19/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

32 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Irregular Applications

•  The SPMD model is too restrictive for some “irregular”
applications

–  The global address space handles irregular data accesses:
§  Irregular in space (graphs, sparse matrices, AMR, etc.)
§  Irregular in time (hash table lookup, etc.): for reads, UPC handles this

well; for writes you need atomic operations

–  Irregular computational patterns are more difficult:
§  Not statically load balanced (even with graph partitioning, etc.)
§  Some kind of dynamic load balancing needed (e.g., a task queue)

•  Design considerations for dynamic scheduling UPC
–  For locality reasons, SPMD still appears to be best for regular

applications; aligns threads with memory hierarchy
–  UPC serves as “abstract machine model” so dynamic load

balancing as an add-on may be written in portable UPC

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

33 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

// allocate a distributed task queue
taskq_t * taskq_all_alloc();
// enqueue a task into the distributed queue
int taskq_put(taskq_t *, void *func,
 void *in, void *out);
// run a task from the local task queue
// returns 0 if no task is available locally
int taskq_execute(taskq_t *);
// try to steal tasks from a random victim
int taskq_steal(taskq_t *);
// test whether queue is globally empty
int taskq_isEmpty(taskq_t *);
// free distributed task queue memory
int taskq_all_free(taskq_t *);

Distributed Tasking API for UPC
(http://upc.lbl.gov/task)

sh
ar

ed

pr
iv

at
e

enqueue dequeue

internals are hidden from
user, except that dequeue
operations may fail and
provide hint to steal

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

34 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC Tasking on
Nehalem 8 core SMP

0
1
2
3
4
5
6
7
8
9

Sp
ee

du
p

N
or

m
al

iz
ed

 to
 S

er
ia

l E
xe

c.

Ti
m

e

UPC Tasking
OpenMP Tasking

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

35 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Multi-Core Cluster Performance

UTS (T1XL) FIB (48) NQueen (15x15)

39.5 40.1 43.1 43.0

58.7 59.5 66.5 71.4
82.9 84.1

113.6 116.9

80.3
96.1

152.7
161.7

128.2

172.8

Speedup 16.5 % 5.6% 25.9%

0

20

40

60

80

100

120

140

160

180

200

RANDOM LOCALITY RANDOM LOCALITY RANDOM LOCALITY

Sp
ee

du
p

re
la

tiv
e

to
 S

er
ia

l E
xe

c.

Ti
m

e

64 (8 nodes) 128 (16 nodes) 256 (32 nodes)

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

36 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Hierarchical PGAS Model

•  A global address space for hierarchical machines may have multiple
kinds of pointers

•  These can be encoded by programmers in type system or hidden,
e.g., all global or only local/global

•  This partitioning is about pointer span, not privacy control
(although one may want to align with parallelism)

B

span 1
(core local)

span 2
(chip local)

level 3
(node local)

level 4
(global world)

C
D

A
1

2
3 4

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

37 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Hybrid Partitioned Global Address
Space

Local
Segment
on Host
Memory

Processor 1

Shared
Segment
on Host
Memory

Local
Segment
on GPU
Memory

Local
Segment
on Host
Memory

Processor 2

Local
Segment
on GPU
Memory

Local
Segment
on Host
Memory

Processor 3

Local
Segment
on GPU
Memory

Local
Segment
on Host
Memory

Processor 4

Local
Segment
on GPU
Memory

v  Each thread has only two shared segments, which can be
either in host memory or in GPU memory, but not both.

v  Decouple the memory model from execution models;
therefore it supports various execution models.

v  Caveat: type system and therefore interfaces blow up with
different parts of address space

Shared
Segment
on GPU
Memory

Shared
Segment
on Host
Memory

Shared
Segment
on GPU
Memory

Shared
Segment
on Host
Memory

Shared
Segment
on GPU
Memory

Shared
Segment
on Host
Memory

Shared
Segment
on GPU
Memory

Ø Basic PGAS concepts
•  Trends

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

38 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

GASNet GPU Extension Performance

Latency Bandwidth

Good Good

39 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Compilation and Execution

•  On Cray XE6, hopper.nersc.gov (at NERSC), with PGI compiler
–  UPC only
–  Initialization: module load bupc
–  Compile with fixed thread count:

§  upcc –O –T=4 -o myprog myprog.c
–  Compile with dynamic thread count:

§  upcc –O -o myprog myprog.c
–  Compile with debugging checks (assertions) enabled:

§  upcc –g [–T=4] -o myprog myprog.c
–  Execute (interactive test on 1 node with 24 cores):

§  qsub -I –q special -lmppwidth=24,mppnppn=24, \
 walltime=00:30:00 -V

§  upcrun -n 4 –cpus-per-node 24 ./myprog

06/15/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

see also
UPC-pgi

Number of UPC threads:
Must equal the compile-time

„-T“ setting, if any

recommended for
any development work

40 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Compilation and Execution

•  On Cray XE6, hopper.nersc.gov (at NERSC), with Cray compilers
–  Initialization: module switch PrgEnv-pgi PrgEnv-cray
–  Compile:

§  UPC: cc -h upc -o myprog myprog.c
§  CAF: ftn –e m –h caf -o myprog myprog.f90

–  Execute (interactive test on 1 nodes with 24 cores):
§  qsub -I –q special -lmppwidth=24,mppnppn=24, \
 walltime=00:30:00 -V

§  aprun -n 24 -N 24 ./myprog (all 24 cores in the node are used)
§  aprun -n 12 -N 12 ./myprog (only 12 cores are used)

06/15/09, Author:
Rolf Rabenseifner

Ø Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

see also
Cray UPC

see also
Cray Fortran

41 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

First exercise – part 1

•  Purpose:
–  use of compiler and run time

environment
–  use basic intrinsics

•  Copy skeleton program to your
working directory:

–  cp ../hello/hello_serial.f90 hello_caf_1.f90
–  cp ../hello/hello_serial.c hello_upc_1.c

•  Add statements to enable
running in parallel

–  each task should write its rank and
the number of tasks

–  only one task should write „hello
world“

•  Compile and run
–  with 4 tasks

Ø Basic PGAS concepts
• Exercises

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

hello

integer :: myrank,numprocs
…
myrank = this_image()
numprocs = num_images()
if (myrank == 1) &
 print *, 'Hello world'
print *,'I am image number', &
 myrank,' of ',numprocs

Fortran

#include <upc.h>
…
if (MYTHREAD == 0)
 printf("hello world\n");
printf("I am thread number %d
 of %d threads\n",
 MYTHREAD, THREADS);

C

42 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

First exercise – part 2

•  Purpose:
–  first attempt at data transfer

•  Copy program from part 1:
–  cp hello_caf_1.f90 hello_caf_2.f90
–  cp hello_upc_1.c hello_upc_2.c

•  Add declaration for
–  an integer coarray x (CAF)
–  an integer shared variable x (UPC)

•  Assign rank value on each
task to x

•  All tasks but the first should
print the value of x on the first
task

–  observe what happens if run
repeatedly with more than one
image/thread

Ø Basic PGAS concepts
• Exercises

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

hello

integer :: x[*] = 0
:
x = 99+this_image()
if (this_image() > 1) then
 write(*, *) ‘x from 1 on‘, &
 this_image(), ‘ is ‘,x[1]
end if

Fortran

shared [*] int x[THREADS];
:
x[MYTHREAD] = 100+MYTHREAD;
if (MYTHREAD > 0) {
 printf(“x from 0 on %d is %d\n“
 , MYTHREAD, x[0]);
}

C

incorrect. why?

incorrect. why?

43 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

First exercise – part 3

•  Purpose:
–  add necessary synchronization

•  Copy program from part 2:
–  cp hello_caf_2.f90 hello_caf_3.f90
–  cp hello_upc_2.c hello_upc_3.c

•  Add synchronization
statement

•  Check correctness of results

Ø Basic PGAS concepts
• Exercises

•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

hello

integer :: x[*] = 0
:
x = 99+this_image()
sync all
if (this_image() > 1) then
 write(*, *) ‘x from 1 on‘, &
 this_image(), ‘ is ‘,x[1]
end if

Fortran

shared [*] int x[THREADS];
:
x[MYTHREAD] = 100+MYTHREAD;
upc_barrier;
if (MYTHREAD > 0) {
 printf(“x from 0 on %d is %d\n“
 , MYTHREAD, x[0]);
}

C

44 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC and CAF Basic Syntax

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

o  Declaration of shared data / coarrays
o  Intrinsic procedures for handling shared data

-  elementary work sharing

o  Synchronization:
-  motivation – race conditions;
-  rules for access to shared entities by different threads/images

o  Dynamic entities and their management:
-  UPC pointers and allocation calls
-  CAF allocatable entities and dynamic type components
-  Object-based and object-oriented aspects

Hands-on: Exercises on basic syntax and dynamic data

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html

45 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Partitioned Global Address Space:
Distributed variable

•  Declaration:
–  UPC: shared float x[THREADS]; // statically allocated outside of functions

–  CAF: real :: x[0:*]
•  Data distribution:

x[0] x[1] x[2] x[3] x[4] x[5]

UPC: “Parallel dimension”

CAF: “Codimension”

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

•  Shared entities
•  Advanced synchronization

concepts
•  Applications

46 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Partitioned Global Address Space:
Distributed array

•  Declaration:
–  UPC: shared float x[3][THREADS]; // statically allocated outside of functions

–  CAF: real :: x(0:2)[0:*]
•  Data distribution:

x(0)[0]
x(1)[0]
x(2)[0]

UPC: “Parallel dimension”

CAF: “Codimension”

x(0)[1]
x(1)[1]
x(2)[1]

x(0)[2]
x(1)[2]
x(2)[2]

x(0)[3]
x(1)[3]
x(2)[3]

x(0)[4]
x(1)[4]
x(2)[4]

x(0)[5]
x(1)[5]
x(2)[5]

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5

[2] in UPC (2) in CAF

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

47 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Distributed arrays with UPC

•  UPC shared objects may be statically allocated
•  Definition of shared data:

–  shared [blocksize] type variable_name;
–  shared [blocksize] type array_name[dim1];
–  shared [blocksize] type array_name[dim1][dim2];
–  …

•  Default: blocksize=1 if no “[…]” given (different from “[]”, which we see later)
•  The distribution is always round robin with chunks of blocksize elements
•  Blocked distribution is implied if last dimension==THREADS and blocksize==1

the dimensions
define which

elements exist

See next slides

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

48 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC shared data – examples

a[0]
a[4]
a[8]
a[12]
a[16]

a[1]
a[5]
a[9]
a[13]
a[17]

a[2]
a[6]
a[10]
a[14]
a[18]

a[3]
a[7]
a[11]
a[15]
a[19]

Thread 0 Thread 1 Thread 2 Thread 3

shared [1] float a[20]; // or
shared float a[20];

a[0]
a[1]
a[2]
a[3]
a[4]

a[5]
a[6]
a[7]
a[8]
a[9]

a[10]
a[11]
a[12]
a[13]
a[14]

a[15]
a[16]
a[17]
a[18]
a[19]

Thread 0 Thread 1 Thread 2 Thread 3

shared [5] float a[20]; // or
define N 20
shared [N/THREADS] float a[N];

a[0][0]
a[1][0]
a[2][0]
a[3][0]
a[4][0]

Thread 0 Thread 1 Thread 2 Thread 3

shared [1] float a[5][THREADS];
// or
shared float a[5][THREADS];

a[0][1]
a[1][1]
a[2][1]
a[3][1]
a[4][1]

a[0][2]
a[1][2]
a[2][2]
a[3][2]
a[4][2]

a[0][3]
a[1][3]
a[2][3]
a[3][3]
a[4][3]

a[0][0]
a[0][1]
a[0][2]
a[0][3]
a[0][4]

Thread 0 Thread 1 Thread 2 Thread 3

shared [5] float a[THREADS][5];

identical at compile time THREADS=1st dim!

a[1][0]
a[1][1]
a[1][2]
a[1][3]
a[1][4]

a[2][0]
a[2][1]
a[2][2]
a[2][3]
a[2][4]

a[3][0]
a[3][1]
a[3][2]
a[3][3]
a[3][4]

05/19/09, Author:
Andrew Johnson,

Rolf Rabenseifner

Courtesy of Andrew Johnson

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

49 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC shared data –
examples (continued)

 a[0] a[1] a[2] a[3]

Thread 0 Thread 1 Thread 2 Thread 3

shared float a[THREADS]; // or
shared [1] float a[THREADS];

a[0]
a[1]
a[8]
a[9]
a[16]
a[17]

a[2]
a[3]
a[10]
a[11]
a[18]
a[19]

a[4]
a[5]
a[12]
a[13]

a[6]
a[7]
a[14]
a[15]

Thread 0 Thread 1 Thread 2 Thread 3

shared [2] float a[20];

 a

Thread 0 Thread 1 Thread 2 Thread 3

shared float a;
// located only in thread 0

a[0]
a[1]
a[2]
…
a[9]
 Thread 0 Thread 1 Thread 2 Thread 3

shared [] float a[10];

Blank blocksize à located only in thread 0
upc_threadof(&a[15]) == 3

05/19/09, Author:
Andrew Johnson,

Rolf Rabenseifner

Courtesy of Andrew Johnson

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

50 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Integration of the type system
(static type components)

•  CAF:

–  compare this with effort needed
 to implement the same with MPI (dispense with all of MPI_TYPE_* API)

–  what about dynamic type components? à later in this talk

•  UPC:
type :: body
 real :: mass
 real :: coor(3)
 real :: velocity(3)
end type

type(body) :: asteroids(100)[*]
type(body) :: s
:
if (this_image() == 2) &
 s = asteroids(5)[1]

typedef struct {
 float mass;
 float coor[3];
 float velocity[3];
} Body;

declare and use entities of this type (symmetric variant):

shared [100] \
 Body asteroids[THREADS][100];
Body s;
:
if (MYTHREAD == 1) {
 s = asteroids[0][4];
}

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

51 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Local access to local part
of distributed variables (1)

•  UPC:

–  *x_local now equals x[MYTHREAD]
–  can be used in its place for

§  clearer and more efficient code
§  passing data to standard (serial) numerical libraries

–  NOTE: generally, only allowed when datum x[i] has “local affinity”

–  FUTURE (UPC 1.3): equivalent for “intranode” sharing:

shared float x[THREADS];
float *x_local;

x_local = (float *) &x[MYTHREAD];

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

upc_threadof(&x[i]) == MYTHREAD

if (upc_castable(&x[i])) {
 x_local = upc_cast(&x[i]);

} 05/19/09, Author:
Rolf Rabenseifner
Modified for SC12

by R. Bader

Overrides compile-time
type checking

Enforces compile-time
type checking

52 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Local access to local part
of distributed variables (2)

•  CAF: (0-based ranks) (1-based ranks)

•  Most efficient way of accessing data

–  For non-coindexed coarrays, it is guaranteed that no cross-image
accesses occur

–  Therefore, the compiler can optimize code as if it were regular serial
code

real :: x[0:*]
numprocs=num_images()
myrank =this_image()–1

x = …
! x now equals x[myrank]

real :: x[*]
numprocs=num_images()
myrank =this_image()

x = …
! x now equals x[myrank]

05/19/09, Author:
Rolf Rabenseifner
Modified for SC12

by R. Bader

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

53 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

CAF-only: Multidimensional
coindexing

•  Coarrays may have a corank larger than 1
•  Each variable may use a different coindex range

integer :: numprocs, myrank, coord1, coord2, coords(2)
real :: x[0:*]
real :: y[0:1,0:*] ! high value of last coord must be *

numprocs = num_images()
myrank = this_image(x,1) ! x is 0-based
coord1 = this_image(y,1)
coord2 = this_image(y,2)
coords = this_image(y) ! coords-array!

x now equals x[myrank]
y now equals y[coord1,coord2]
 and y[coords(1),coords(2)]

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

54 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Remote access intrinsic support

•  CAF: Inverse to this_image(): the image_index() intrinsic
–  delivers the image corresponding to a coindex tuple

–  provides necessary information e.g., for future synchronization
statements (to be discussed)

•  UPC: upc_threadof() provides analogous information

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

integer :: remote_image
real :: y[0:1,0:*] ! high value of last coord must be *

remote_image = image_index(y, (/ 1, 2 /))

image on which y[1, 2] resides;
zero if coindex tuple is invalid

55 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Work sharing (1)

•  Loop execution
–  simplest case: all data are

generated locally

–  chunking variants
(me=this_image())

•  CAF data distribution
–  in contrast to UPC, data model

is fragmented
–  trade-off: performance vs.

programming complexity

–  blocked distribution:

 (block size: depends on number of
images; number of actually used
elements may vary between
images)

–  alternatives: cyclic, block-cyclic

do i=1, n
 : ! do work
end do

do i=me,n,num_images()
 : ! do work
end do

: ! calculate chunk
do i=(me-1)*chunk+1,min(n,me*chunk)
 : ! do work
end do

a1,…,aN

numeric model: array of size N

a1,…,ab ab+1,…,a2b …,aN

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

56 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Work sharing (2)
data distribution + avoiding non-local accesses

•  CAF:
–  index transformations between

local and global

•  UPC: global data model

–  loop over all, work on subset

–  conditional may be inefficient
–  cyclic distribution may be slow

•  UPC: upc_forall
–  integrates affinity with loop

construct

–  affinity expression:

 an integer à execute if i
%THREADS == MYTHREAD
 a global address à execute if
upc_threadof(…) == MYTHREAD

 continue or empty à all
threads (use for nested upc_forall)

–  example above: could replace „i“
with „&a[i]“

integer :: a(ndim)[*]
do i_local=1, nlocal
 i_global = …
 a(i_local) = …
end do

shared int a[N];
for (i=0; i<N; i++) {
 if (i%THREADS == MYTHREAD) {
 a[i] = … ;
 }
}

shared int a[N];
upc_forall (i=0; i<N; i++; i) {
 a[i] = … ;
} affinity expression

may vary
between images

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

function of
(i_local,

this_image())

expression
depends on
i_global

57 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Typical collective execution
with access epochs

(= synchronization phases)

UPC: *x_local = 17.0;
CAF: x = 17.0

Barrier synchronization

UPC: printf(… , x[1])
CAF: print *, x[1]

Barrier synchronization

UPC: x[0] = 29.0;
CAF: x[0] = 29.0
…

Process 0
UPC: *x_local = 33.0;
CAF: x = 33.0

Barrier synchronization

UPC: printf(… , x[0])
CAF: print *, x[0]

Barrier synchronization

UPC: x[1] = 78.0;
CAF: x[1] = 78.0
…

Process 1
1.  Local accesses on

shared data

2.  Barrier until all
processes have
finished
their local accesses

3.  Remote accesses

4.  Barrier until all
processes have
finished
their remote accesses

5.  Local accesses to
shared data

Both notations
are equivalent

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

(CAF: segments)

Barrier synchronization is required to ensure
•  local writes in step 1 precede remote reads in step 3
•  remote reads in step 3 precede local writes in step 5

58 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Collective execution –
same with remote write / local read

UPC: x[1] = 33.0;
CAF: x[1] = 33.0

Barrier synchronization

UPC: printf(…, *x_local)
CAF: print *, x

Barrier synchronization

UPC: x[1] = 78.0;
CAF: x[1] = 78.0
…

Process 0
UPC: x[0] = 17.0;
CAF: x[0] = 17.0

Barrier synchronization

UPC: printf(…, *x_local)
CAF: print *, x

Barrier synchronization

UPC: x[0] = 29.0;
CAF: x[0] = 29.0
…

Process 1
1.  Remote accesses on

shared data

2.  Barrier until all
processes have
finished
their remote accesses

3.  Local accesses

4.  Barrier until all
processes have
finished
their local accesses

5.  Remote accesses

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

Previous example with local/remote exchanged:
Barrier synchronization is required to ensure
•  remote writes in step 1 precede local reads in step 3
•  local reads in step 3 precede remote writes in step 5

59 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Synchronization

•  Between a write access and a (subsequent or preceding) read or write
access of the same data from different processes,
a synchronization of the processes must be done!

•  Most simple synchronization:
à barrier between all processes

•  UPC:

•  CAF:

•  Not the only synchronization mechanism, but the simplest one available

Accesses to distributed data by some/all processes
upc_barrier;
Accesses to distributed data by some/all processes

Accesses to distributed data by some/all processes
sync all
Accesses to distributed data by some/all processes

05/19/09, Author:
Rolf Rabenseifner

Otherwise
race condition!

•  Basic PGAS concepts
Ø UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

60 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Examples

•  UPC:

•  CAF:

shared float x[THREADS];
x[MYTHREAD] = 1000.0 + MYTHREAD;
upc_barrier;
printf(“myrank=%d, x[neighbor=%d]=%f\n”,
 myrank, (MYTHREAD+1)%THREADS,
 x[(MYTHREAD+1)%THREADS]);

real :: x[0:*]
integer :: myrank, numprocs
numprocs=num_images(); myrank=this_image()–1
x = 1000.0 + myrank
sync all
print *, ‘myrank=‘, myrank,
 ‘x[neighbor=‘, mod(myrank+1,numprocs),
 ‘]=‘, x[mod(myrank+1,numprocs)]

write
sync

read

write
sync

read

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

61 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Another example
•  Basic PGAS concepts
Ø UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

shared float x[THREADS];
while (!converged(x)) {
 float tmp = 0.5*x[MYTHREAD]
 - 0.25*x[(MYTHREAD+1)%THREADS]
 - 0.25*x[(MYTHREAD-1+THREADS)%THREADS];
 upc_barrier;
 x[MYTHREAD] = tmp;
 upc_barrier;
}

read

sync

sync
write

read

Note that real applications must do more work between synchronizations
or performance will be horrible.

62 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC and CAF Basic Syntax

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Shared entities
•  Advanced synchronization

concepts
•  Applications

o  Declaration of shared data / coarrays
o  Intrinsic procedures for handling shared data

-  elementary work sharing
o  Synchronization:

-  motivation – race conditions;
-  rules for access to shared entities by different threads/images

o  Dynamic entities and their management:
-  UPC pointers and allocation calls
-  CAF allocatable entities and dynamic type components
-  Object-based and object-oriented aspects

Hands-on: Exercises on basic syntax and dynamic data

63 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Dynamic allocation with CAF

•  Coarrays may be allocatable:

–  synchronization across all images is then implied at completion of the
ALLOCATE statement (as well as at the start of DEALLOCATE)

•  Same shape on all processes is required!

•  Coarrays with POINTER attribute are not supported

–  this may change in the future

real,allocatable :: a(:,:)[:] ! Example: Two-dim. + one codim.
allocate(a(0:m,0:n)[0:*]) ! Same m,n on all processes

real,allocatable :: a(:)[:] ! INCORRECT example
allocate(a(myrank:myrank+1)[0:*]) ! NOT supported

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

real,pointer :: ptr[*] ! NOT supported: pointer coarray

deferred shape/coshape

64 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Dynamic entities: Pointers

•  Remember pointer semantics
–  different between C and Fortran

•  Pointers and PGAS memory categorization

–  both pointer entity and pointee might be private or shared
 à 4 combinations theoretically possible

–  UPC: three of these combinations are useful in practice
–  CAF: only two of the combinations allowed, and only in a limited manner

 ß aliasing is allowed only to local entities

<type> , [dimension (:[,:,…])], pointer :: ptr

ptr => var ! ptr is an alias for target var

<type> *ptr;

ptr = &var; ! ptr holds address of var

no pointer arithmetic
type and rank matching

pointer arithmetic
rank irrelevant
pointer-to-pointer
pointer-to-void / recast

Fo
rtr

an

C
•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

65 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

•  UPC:

–  pointer to shared: addressing
overhead

•  CAF:

–  entity „o“: typically asymmetric

Pointers continued …

 o[1]%p2 i1[3] i1[4]

i2 i2 ix p1

integer, target :: i1[*]
integer, pointer :: p1

type :: ctr
 integer, pointer :: p2(:)
end type
type(ctr) :: o[*]
integer, target :: i2(3)

ix=o[1]%p2

a coarray cannot have the
pointer attribute

int *p1;
shared int *p2;
int *shared p3;

shared int *shared p4;
int a[N];
shared int b[N];

 p4
 p3

 p1 a[0] p2 p2 a [0]

deprecated

problem: where does p3 point?
all other threads may not reference

(alias+coindexing) vs. address

p1 => i1

p2 = &b[1]; b[1] p3
ref./def.

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

UPC: four combinations:
p1: private pointer to

private memory
p2: private to shared
p3: shared to private
p4: shared to shared

66 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Pointer to local portions
of shared data (review)

•  Cast a shared entity to a local pointer

•  May have performance advantages
•  May improve code readability
•  Required when passing to non-UPC numerical libraries

•  Breaking the local-affinity rule (e.g., using a_local[5])

results in undefined behavior

shared float a[5][THREADS];
float *a_local;

a_local = (float *) &a[0][MYTHREAD];

a_local[0] is identical with a[0][MYTHREAD]
a_local[1] is identical with a[1][MYTHREAD]
…
a_local[4] is identical with a[4][MYTHREAD]

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

address must have affinity
to local thread

pointer arithmetic
selects local part

67 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC: to-shared Pointer
blocking and casting

•  Assume 4 threads:

•  Block size is a part of the variable‘s type
•  One may cast between pointers with different block sizes

–  pointer arithmetic follows blocking („phase“) of pointer (not pointee)!
–  cast changes the view but does not move any data

•  Consequences for libraries à see later

shared [2] int A[10];
shared int *p2;
shared [2] int *q2;

A[0]
A[1]
A[8]
A[9]

A[2]
A[3]

A[4]
A[5]

A[6]
A[7]

Thread 0 1 2 3
if (MYTHREAD == 1) {
 p2 = (shared int *)&A[0];
 p2 += 4;
 q2 = &A[0];
 q2 += 4;
}

 p2 q2 after pointer increment

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

block size
different from A

block size same
as for A

strange sequence

natural sequence

68 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC dynamic Memory Allocation

•  upc_all_alloc
–  Collective over all threads (i.e., all threads must call)
–  All threads get a copy of the same pointer to shared memory

–  Similar result as with static allocation at compile time:

–  Example:

shared void *upc_all_alloc(size_t nblocks, size_t nbytes)

Shared data allocated by upc_all_alloc

Global	

access	

shared [nbytes] char[nblocks*nbytes];

Run time arguments

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

shared [1] float *A;
A = (shared [1] float *) upc_all_alloc(n, sizeof(float));
for (i=MYTHREAD; i<n; i+=THREADS) A[i] = …;

All threads may access A[i], i=0..n-1. Here, only the owning thread accesses A[i].

Compile-time constant! Run-time expression!

69 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC dynamic Memory Allocation (2)

•  upc_global_alloc
–  Only the calling thread gets a pointer to shared memory

shared void *upc_global_alloc(size_t nblocks, size_t nbytes)

Shared data allocated by upc_global_alloc

Global	

access	

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

70 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC dynamic Memory Allocation (3)

•  upc_alloc
–  Allocates memory in the local thread that is accessible by all threads
–  Only on calling processes

–  Similar result as with static allocation at compile time:

shared void *upc_alloc(size_t nbytes)

Global	

access	

shared [] char[nbytes]; // but with affinity to the calling thread

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

shared pointer to
shared needed in

most cases

71 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Common mistakes with dynamic
allocation

•  shared int *p1 = upc_alloc(…);
–  p1 is cyclic, but the allocation is indefinite (all on calling thread)
–  Use of p1[1]might crash or might silently access wrong datum
–  Probably meant either of the following:
shared int *p1 = upc_global_alloc(…); //cyclic
shared [] int *p1 = upc_alloc(…); //indefinite

•  shared [2] int *p2 = upc_all_alloc(2, N*sizeof(int))
–  Not always an error, but pretty often:

first 2 is the size of a block, second 2 is the number of blocks
–  Probably meant either of the following:

upc_all_alloc(N, 2*sizeof(int)); // 2*N elements
upc_all_alloc(N/2, 2*sizeof(int)); // N elements

•  Multiple calls to upc_free()for memory allocated by upc_all_alloc()
–  Even though all threads call upc_all_alloc(), only one object is

allocated and it must be freed (at most) once.
–  FUTURE: UPC 1.3 introduces upc_all_free() to help avoid this

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

72 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

The addresses are
stored in a p4-pointer,

i.e., are accessible from
all threads through p4

UPC example
with dynamic allocation

#include <upc.h>
#include <stdio.h>
#include <stdlib.h>
shared [] float * shared p4[THREADS]; // shared pointer array
 // to shared data
float *p1; // private pointer to private portion of shared data

int main(int argc, char **argv)
{ int i, n, rank;
 n = atoi(argv[1])
 p4[MYTHREAD] = (shared [] float *) upc_alloc(n * sizeof(float));
 p1 = (float *) p4[MYTHREAD];
 for (i=0; i<n; i++) {
 p1[i] = …
 }
 upc_barrier;
 if (MYTHREAD == 0) {
 for (rank=0; rank<THREADS; rank++)
 for (i=0; i<n; i++) {
 printf(……, p4[rank][i]);
 }
 }
 }
 return 0;
}

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

Each thread allocates a
contiguous block of data

Local & “efficient”
access through p1

After the barrier,
all threads can access all locally

stored data through p4.
(Here an example with only
thread 0 reading the data.)

Each block may
have a different

length !!!

73 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC example
with shared pointers

// same includes as on previous slide
shared [] float * shared p4[THREADS]; // shared pointer array
 // to shared data
float *p1; // private pointer to private portion of shared data
shared [] float *p2_neighbor; // private pointer to shared data
int main(int argc, char **argv)
{ int i, n, rank, next;
 n = atoi(argv[1])
 p4[MYTHREAD] = (shared [] float *) upc_alloc(n * sizeof(float));
 p1 = (float *) p4[MYTHREAD];
 upc_barrier;

 next = MYTHREAD+1 % THREADS;
 p2_neighbor = p4[next];
 for (i=0; i<n; i++) {
 p1[i] = … /* local parts */
 p2_neighbor[i] = … /* neighbor data */
 }
 upc_barrier;

 for (i=0; i<n; i++) {
 printf(……, p2_neighbor[i]);
 }
 return 0;
}

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

A p2-pointer can
be used to access

exactly one
neighbor block

X
x

A p2-pointer can
be used to access

exactly one
neighbor block

74 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Integration of the type system
CAF dynamic components

•  Derived type component
–  with POINTER attribute, or
–  with ALLOCATABLE attribute

 (don‘t care a lot about the
differences for this discussion)

•  Definition/references
–  avoid any scenario which

requires remote allocation

•  Step-by-step:
1.  local (non-synchronizing) allo-

cation/association of component
2.  synchronize
3.  define / reference on remote

image

go to image p, look at descriptor,
transfer (private) data

 o[1]%p2 o[2]%p2 o[3]%p2 o[4]%p2

X

type(ctr) :: o[*]
:
if (this_image() == p) &
 allocate(o%p2(sz))
sync all
if (this_image() == q) &
 o[p]%p2 = <array of size sz>
end if

sz same on each image?

or
o%p2 => var

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

remember earlier
type definition

10/18/09, Author:
R. Bader

sh
ar

ed

75 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Integration of the type system
UPC pointer components

•  Type definition

–  must avoid undefined results
when transferring data
between threads

•  Similar step-by-step:

–  local (on thread p) allocation
initializes pointer p2.

–  program semantics the same as
the CAF example on the previous
slide

typedef struct {
 shared [] int *p2;
} Ctr;

dynamically allo-
cated entity
should
be in shared
memory area

shared [1] Ctr o[THREADS];

int main() {
 if (MYTHREAD == p) {
 o[MYTHREAD].p2 = (shared int *) \
 upc_alloc(SZ*sizeof(int));
 }
 upc_barrier;
 if (MYTHREAD == q) {
 for (i=0; i<SZ; i++) {
 o[p].p2[i] = … ;
 }
 }
}

 o[0].p2 o[1].p2 o[2].p2 o[3].p2

X

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

sh
ar

ed

76 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Fortran Object Model (1)

•  Type extension

–  single inheritance (tree a DAG)

•  Polymorphic entities
–  new kind of dynamic storage

–  change not only size, but also
(dynamic) type of object during
execution of program

type :: body
 real :: mass
 : ! position,
velocity
end type

type, extends(body) ::
&
 charged_body
 real :: charge
end type

type(charged_body) :: &
 proton

proton%mass = …
proton%charge = …

inherited

class(body), &
 allocatable :: balloon

allocate(body :: balloon)
: ! send balloon on trip
if (hit_by_lightning()) then
 : ! save balloon data
 deallocate(balloon)
 allocate(&
 charged_body :: balloon)
 balloon = …
 ! balloon data + charge
end if
: ! continue trip if possible

typed allocation

body

charged_body

etc_body
must be an extension

declared type

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

77 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Fortran Object Model (2)

•  Associate procedures with type

–  polymorphic dummy argument
required for inheritance

–  TBP can be overridden by extension
(must specify essentially same interface,
down to keywords)

•  Run time type/class resolution
–  make components of dynamic type

accessible

–  at most one block is executed
–  use sparingly
–  same mechanism is used (internally)

to resolve type-bound procedure
calls

type :: body
 : ! data components
 procedure(p), pointer :: print
contains
 procedure :: dp
end type

subroutine dp(this, kick)
 class(body), intent(inout) :: this
 real, intent(in) :: kick(3)
 : ! give body a kick
end subroutine

object-bound
procedure (pointer)

type-bound
procedure (TBP)

balloon%print => p_formatted
call balloon%print()
call balloon%dp(mykick) balloon

matches this

select type (balloon)
 type is (body)
 : ! balloon non-polymorphic here
 class is (rotating_body)
 : ! declared type lifted
 class default
 : ! implementation incomplete?
end select

polymorphic
entity

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

78 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Object orientation and Parallelism (1)

•  Run time type resolution

–  allocation must guarantee
same dynamic type on each
image

•  Using procedures

–  procedure pointers may point
to a different target on each
image

–  type-bound procedure is
guaranteed to be the same

call asteroids%dp(kick) ! Fine
call asteroids%print() ! Fine
if (this_image() == 1) then
 select type(asteroids)
 type is (rotating_body)
 call asteroids[2]%print() ! NO
 call asteroids[2]%dp(kick) ! OK
 end select
end if

class(body), &
 allocatable :: asteroids[:]

allocate(rotating_body :: &
 asteroids[*])
! synchronizes
if (this_image == 1) then
 select type(asteroids)
 type is (rotating body)
 asteroids[2] = …
 end select
end if

required for
coindexed access

non-polymorphic

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

79 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Object orientation and Parallelism (2)

•  Coarray type components

•  Usage:

–  entity must be:
 (1) non-allocatable, non-pointer
 (2) a scalar
 (3) not a coarray (because
 par_vec%a already is)

•  Type extension
–  defining a coarray type component

in an extension is allowed, but
parent type also must have a
coarray component

•  Restrictions on assignment
–  intrinsic assignment to polymorphic

coarrays (or coindexed entities) is
prohibited

type parallel_stuff
 real, allocatable :: a(:)[:]
 integer :: i
end type

must be
allocatable

type(parallel_stuff) :: par_vec

allocate(par_vec%a(n)[*])

symmetric

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

80 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Major Differences
between UPC and CAF

•  CAF
–  declaration of shared entity requires additional codimension

(“fragmented data view”).
–  Codimensions are very flexible (multi-dimensional).

•  UPC
–  No codimensions (“global data view”).
–  PGAS-arrays are distributed and the array indices are mapped to

threads.
–  Block-wise distribution hard to handle

§  Last index x[……][THREADS] implies round robin distribution
§  possibility of asymmetric distribution

–  Multiple variants of dynamic allocation

17/05/10, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Dynamic
•  Advanced synchronization

concepts
•  Applications

81 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Second Exercise:
Handling a triangular matrix (1)

•  Consider a triangular matrix

–  suggested data structure

•  Procedure:
–  make copy of ../

triangular_matrix/triangular.f90
or ../triangular_matrix/triangular.c
to your working directory

–  the program reads in matrix size
and a row index from the
command line, it then sets up
A(i,j) = i+j and prints out the
specified row

–  parallelize this program in a
manner that distributes data
evenly across tasks

–  note that accesses to A can be
kept purely local for this problem
(which remote accesses will be
needed?)

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Exercises
•  Advanced synchronization

concepts
•  Applications

A(i,j) i=1..n, j=1..n-i+1

type :: tri_matrix
 real, allocatable :: row(:)
end type

typedef struct {
 float *row;
 size_t row_len;
} Tri_matrix;

Fortran

C

typically n >> number of tasks
i

j

triangular

10/18/09, Author:
R. Bader

82 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Handling a triangular matrix (2)

•  Example program run: •  Suggestions:
–  observe how location of row

changes with number of image
and row index

–  add the element count output as
illustrated to the left

•  Basic PGAS concepts
Ø UPC and CAF basic syntax

• Exercises
•  Advanced synchronization

concepts
•  Applications

aprun –n 3 ./triang.exe 23 20
 Row 20 on image 2: 21.0 22.0 23.0 24.0
Number of elements on image 2: 92
Number of elements on image 1: 100
Number of elements on image 3: 84

10/18/09, Author:
R. Bader

CAF: aserial(i) = aCAF(i / nprocs) [mod(i, nprocs)] i = 1,…,n
 aserial(me + (i_local-1)*nprocs) = aCAF(i_local)[me] i_local = 1,…,rows_per_proc
 me = 1,…,nprocs

UPC simple: Aserial[i] = AUPC[i]
more general: Aserial[i] = AUPC[i%THREADS] [i/THREADS] i = 0,…,n-1

 Aserial[MYTHREAD + i_local*THREADS] = AUPC[MYTHREAD] [i_local]
 i_local = 0,…,rows_per_thread-1
 MYTHREAD = 0,…,THREADS-1

•  Alternative exercise:
–  each thread or image should print the specified row
–  for this alternative, start from the solution program

§  triangular_matrix/solutions/triangular.f90 (Fortran)
§  triangular_matrix/solutions/triangular.upc (UPC)

Solution program for
alternative exercise:

triangular_printall.[upc|f90]

solutions/triangular_simple.upc

solutions/triangular_cyclic.upc

#rows

row to print

83 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Advanced Synchronization
Concepts

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html

o  Partial synchronization
-  mutual exclusion
-  split-phase barrier

o  Collective operations
o  Some parallel patterns and hints on library design:

-  parallelization concepts with and without halo cells
-  work sharing; distributed structures
-  procedure interfaces

o  Hands-on session

84 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Each grey box:
represents one
sync images

statement

Partial synchronization

•  Image subsets
–  sometimes, it is sufficient to

synchronize only a few
images

–  CAF supports this:

 executing image implicitly
included in image set

–  UPC does not explicitly support
this; note that in

 exp only serves as a label, with
the same value on each thread

•  More than 2 images:
–  need not have same image

set on each image
–  but: eventually all image

pairs must be resolved, else
deadlock occurs if (this_image() < 3) then

 sync images ((/ 1, 2 /))
end if

execution sequence

upc_barrier exp;

(/ 2 /) (/ 3 /)

(/ 3 /) (/ 1 /)

(/ 1 /) (/ 2 /)

1
2
3

1
2
3
4

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

(/ 1 /)

deadlock

OK

85 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Example: Simple Master-Worker

•  Scenario:
–  one image sets up data for

computations
–  others do computations

–  difference between
SYNC IMAGES (*) and
SYNC ALL: no need to
execute from all images

•  Performance notes:
–  sending of data by image 1

–  „push“ mode à a high
quality implementation may
implement non-blocking
transfers

–  defer synchronization to
image control statement

if (this_image() == 1) then
 : ! send data

 sync images (*)
else
 sync images (1)
 : ! use data
end if

images 2 etc.
don‘t mind
stragglers

 do i=2, num_images()
 a(:)[i] = …
 end do

„all images“

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

86 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Partial synchronization:
Best Practices

•  Localize complete set of synchronization statements
–  avoid interleaved subroutine calls which do synchronization of their

own

–  a very bad idea if subprogram does the following

–  may produce wrong results even if no deadlock occurs

if (this_image() == 1) sync images (/ 2 /)
call mysub(…)
:
if (this_image() == 2) sync images (/ 1 /)

subroutine mysub(…)
 :
 if (this_image() == 2) sync images (/ 1 /)
 :
end subroutine

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

87 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Mutual Exclusion (simplest case)

•  Critical region
–  In CAF only
–  block of code only executed

by one image at a time

–  in arbitrary order

–  can have a name, but has no
semantics associated with it

•  Subsequently executing
images:

–  segments corresponding to
the code block ordered
against one another

–  this does not apply to
preceding or subsequent
code blocks

à  may need additional
synchronization to protect
against race conditions

•  UPC:
-  use locks (see following

slides)

execution sequence

critical
 : ! statements in region
end critical

e.g., update X[1] 1
2
3
4

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

88 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Memory fence

•  Goal: allow implementation of user-defined synchronization
•  Prerequisite: subdivide a segment into two segments

–  ensure memory operations are observed in-order

•  Assurance given by memory fence:
–  operations on x[Q] and y[Q] via statements on P
–  action on x[Q] precedes action on y[Q] à code movement by compiler prohibited
–  P is subdivided into two segments / access epochs
–  but: segment on Q is unordered with respect to both segments on P

image / thread P

image / thread Q
memory fence

CAF:
sync memory

UPC: „null strict access“
upc_fence;

x[Q] y[Q]
Note:
A memory fence is
implied by most
other synchroni-
zation statements

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

89 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Atomic subroutines and atomic types

•  CAF:

–  ATOM: is a scalar coarray or co-
indexed object of type
logical(atomic_logical_kind)
or
 integer(atomic_int_kind)

–  VALUE: is of same type as ATOM

•  Berkeley UPC extension:

–  shared int64_t *ptr;
–  int64_t value;
–  unsigned and 32 bit integer types

also available
–  „_relaxed“ indicates relaxed

memory model
–  „_strict“ model also available

Remember synchronization rule for relaxed memory model:
A shared entity may not be modified and read from two different threads/images
in unordered access epochs/segments
Atomic subroutines allow a limited exception to this rule

call ATOMIC_DEFINE(ATOM, VALUE)
call ATOMIC_REF(VALUE, ATOM)

Semantics:
•  ATOM/ptr always has a well-defined value if only the above subroutines are used
•  for multiple updates (=definitions) on the same ATOM, no assurance is given about the

 order which is observed for references à programmers‘ responsibility

bupc_atomicI64_set_relaxed(ptr, value);
value = bupc_atomicI64_read_relaxed(ptr);

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

90 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Example: Producer/Consumer

•  CAF:

–  memory fence: prevents reordering

of statements (A), enforces memory
loads (for coarrays, B)

–  atomic calls: ensure that B is exe-
cuted after A

•  BUPC:

•  further atomic functions:

–  swap, compare-and-swap, (fetch-and-)
add, (fetch-and-)<logical-operation>

–  Will also be supported in future UPC 1.3
(with different syntax) and Coarray TS

logical(ATOMIC_LOGICAL_KIND), save :: &
 ready[*] = .false.
logical :: val

me = THIS_IMAGE()
if (me == p) then
 : ! produce
 sync memory ! A
 call ATOMIC_DEFINE(ready[q], .true.)
else if (me == q)
 val = .false.
 do while (.not. val)
 call ATOMIC_REF(val, ready)
 end do
 sync memory ! B
 : ! consume
end if

segment Pi ends

segment Qj starts

shared [] int32_t ready = 0;
int32_t val;

me = MYTHREAD;
if (me == p) {
 : // produce
 upc_fence; ! A
 bupc_atomicI32_set_relaxed(&ready, 1);
} else if (me == q) {
 val = 0;
 while (! val) {
 val = \
 bupc_atomicI32_read_relaxed(&ready);
 }
 upc_fence; ! B
 : // consume
}

roll-your-own
partial synchronization

sync images ((/ p, q /))
would do the job as well

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

91 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Recommendation

•  Functionality from the last three slides
–  should be used only in exceptional situations
–  can be easily used in an unportable way (works on one system, fails

on another) à beware

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

92 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Locks – a more general
mechanism for mutual exclusion

•  Coordinate access to shared (= sensitive) data
–  sensitive data represented as “red balls”

•  Use a coarray/shared lock variable
–  modifications are guaranteed to be atomic
–  consistency across images/threads

•  Problems with CAF critical region:
–  lack of scalability if multiple entities are protected
–  updates to same entity in different parts of program

blocking

non-blocking

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

93 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Usage of locks (1) – blocking

•  CAF:
–  coarray lock variable

– 
– 
– 

–  as many locks as there are

images, but typically only one is
used

–  lock/unlock: no memory fence,
only one-way segment ordering

•  UPC:
–  single pointer lock variable

–  lock/unlock imply memory
fence

use, intrinsic :: iso_fortran_env

type(lock_type) :: lock[*]
! default initialized
! to unlocked

lock(lock[1])
: ! play with red balls
unlock(lock[1])

like critical, but
more flexible

#include <upc.h>

upc_lock_t *lock; // local pointer
 // to shared entity

lock = upc_all_lock_alloc();

upc_lock(lock);
: // play with red balls
upc_unlock(lock);
upc_barrier; // prevent race vs. free
// single free from arbitrary thread
if (MYTHREADS == THREADS-1)
 upc_lock_free(lock);

collective call
same result on

each thread

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

upd. Sep 2012

94 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Usage of locks (2) – nonblocking

•  CAF:

•  UPC:

–  thread-individual lock generation is
also possible (non-collective)

–  FUTURE: UPC 1.3 will include
upc_all_lock_free() (with implicit barrier)

use, intrinsic :: iso_fortran_env

type(lock_type) :: lock[*]
logical :: got_it
do
 lock(lock[2], &
 acquired_lock=got_it)
 if (got_it) exit
 : ! go climb that mountain
end do
: ! play with other red balls
unlock(lock[2])

#include <upc.h>

upc_lock_t *lock; // local pointer
 // to shared entity

lock = upc_all_lock_alloc();
for (;;) {
 if (upc_lock_attempt(lock)) break;
 : // go climb that mountain
}
: // play with red balls
upc_unlock(lock);
upc_barrier; // prevent race vs. free
// single free from arbitrary thread
if (MYTHREADS == THREADS-1)
 upc_lock_free(lock);

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

Upd. Sep 2012

95 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC: Split-phase barrier

•  Separate barrier completion point from waiting point
–  this allows threads to continue computations after reaching the

completion point à may reduce impact of load imbalance

–  completion of upc_wait once all threads reach upc_notify
–  collective – all threads must execute both calls in same order

•  CAF:
–  presently does not have this facility in statement form
–  FUTURE: Notify/Query with events (non-collective though)

execution sequence

completion point waiting point

for (…) a[n][i]= …;
upc_notify;
// do work (on b?) not
// involving a
upc_wait;
for (…) b[i]=b[i]+a[q][i];

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

96 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC: Memory consistency modes

•  How are shared entities accessed?
–  relaxed mode à program assumes no concurrent accesses from different threads
–  strict mode à program ensures that accesses from different threads are separated,

and prevents code movement across these synchronization points
–  relaxed is default; strict may have large performance penalty

•  Options for synchronization mode selection
–  variable level:

 (at declaration
 or in a cast)

–  code section level:

strict shared int flag = 0;
relaxed shared [*] int c[THREADS][3];

c[q][i] = …;
flag = 1;

while (!flag) {…};
… = c[q][j]; Th

re
ad

 q

Th
re

ad
 p

{ // start of block
 #pragma upc strict
 … // block statements
}
// return to default mode

-  program level
#include <upc_strict.h>
// or upc_relaxed.h

consistency mode on variable declaration overrides
code section or program level specification

q has same
value on
thread p as
on thread q

example for
a spin lock

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

and outlook

10/18/09, Author:
R. Bader

97 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

What strict memory consistency
does and doesn‘t do for you

•  „strict“ cannot prevent all race conditions
–  example: „ABA“ race

•  „strict“ does not make a[i]+=j atomic (read/modify/write)
•  „strict“ does assure that changes on (complex) objects appear in

the same order on other threads

strict shared int flag;
int val, val1, val2;

flag = 0;
upc_barrier;
flag = 1;
flag = 0;

thread 0

upc_barrier;
val = flag;

thread 1

may end up
with 0 or 1

flag = 0;
upc_barrier;
flag = 1;
flag = 2;

upc_barrier;
val1 = flag;
val2 = flag;

may obtain (val1 <= val2)
but not (val1 > val2) e.g.,

(2, 1) or (2,0) are not
possible

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

thread 0 thread 1

98 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Advanced Synchronization
Concepts

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html

o  Partial synchronization
-  mutual exclusion
-  split-phase barrier

o  Collective operations
o  Some parallel patterns and hints on library design:

-  parallelization concepts with and without halo cells
-  work sharing; distributed structures
-  procedure interfaces

o  Hands-on session

99 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Collective functions (1)

•  Two types:
–  data redistribution (e.g., scatter,

gather)
–  computation operations (reduce,

prefix, sort)

•  Separate include file:

•  Synchronization mode:
–  constants of type upc_flag_t

•  IN/OUT:
–  refers to whether the specified

synchronization applies at the entry or
exit to the call

•  Synchronization:
–  NOSYNC – threads do not synchronize

at entry or exit
–  MYSYNC – start processing of data

only if owning threads have entered
the call / exit function call only if all
local read/writes complete

–  ALLSYNC – synchronize all threads at
entry / exit to function

•  Combining modes:
–  UPC_IN_NOSYNC | UPC_OUT_MYSYNC

–  UPC_IN_NOSYNC same as
UPC_IN_NOSYNC | UPC_OUT_ALLSYNC

–  0 same as
 UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC

 NOSYNC
UPC_ _ MYSYNC
 ALLSYNC

IN

OUT

#include <upc_collective.h>

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

100 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Collectives (2): Example for
redistribution

•  UPC Allscatter

–  src has affinity to a single
thread

–  i-th block of size nbytes is
copied to src with affinity to
thread i

•  CAF:
–  already supported by combined

array and coarray syntax
–  „push“ variant:

–  „pull“ variant:

 simpler, but no asynchronous
execution possible

void upc_all_scatter (
 shared void *dst,
 shared const void *src,
 size_t nbytes,
 upc_flag_t sync_mode); if (this_image() == 2) then

 do i = 1, num_images
 b(1:sz)[i] = &
 a((i-1)*sz+1:i*sz)
 end do
end if
sync all

me = this_image()
b(1:sz) = &
 a((me-1)*sz+1:me*sz)[2]

can be a
non-coarray

al
ls

ca
tte

r

execution sequence

0

1

2

3

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

101 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Collectives (3): Reductions

•  Reduction concept:
–  distributed set of objects
–  operation defined on type

–  destination object resides

in shared space
•  Availability:

–  UPC only
–  CAF Future: TS will include

some collectives

•  Reduction type codes

•  Operations:

–  are constants of type

upc_op_t

+

al
lre

du
ce

C/UC – signed/unsigned char L/UL – signed/unsigned long

S/US – signed/unsigned short F/D/LD – float/double/long double

I/UI – signed/unsigned int

Numeric Logical User-defined function

UPC_ADD UPC_AND UPC_FUNC

UPC_MULT UPC_OR UPC_NONCOMM_FUNC

UPC_MAX UPC_XOR

UPC_MIN UPC_LOGAND

UPC_LOGOR

execution sequence

0

1

2

3

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

102 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Collectives (4): Reduction prototype

•  src and dst may not be aliased
•  replace T by type (C, UC, etc.)
•  function argument will be NULL

unless user-defined function is
configured via op

void upc_all_reduceT(

 shared void *restrict dst,

 shared const void *restrict src,

 upc_op_t op,

 size_t nelems,

 size_t blk_size,

 T(*func)(T, T),

 upc_flag_t flags);

destination and source, respectively

number of elements of type T

source pointer block size,
or 0 for indefinite

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

103 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

•  Prefix reductions
–  upc_all_prefix_reduceT()
–  semantics:

 for UPC_ADD,
 thread i gets
 (thread-dependent result)

Collectives (5): further functions

•  Redistribution functions
–  upc_all_broadcast()
–  upc_all_gather_all()
–  upc_all_gather()
–  upc_all_exchange()
–  upc_all_permute()

 à consult the UPC language
specification for details

+

al
l_

pr
ef

ix
_r

ed
uc

e

execution sequence

0

1

2

3

+

∑
=

i

k
ksrc

0
][

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

10/18/09, Author:
R. Bader

104 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Advanced Synchronization
Concepts

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
•  Applications

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html

o  Partial synchronization
-  mutual exclusion
-  split-phase barrier

o  Collective operations
o  Some parallel patterns and hints on library design:

-  parallelization concepts with and without halo cells
-  work sharing; distributed structures
-  procedure interfaces

o  Hands-on session

105 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Work sharing (3)
data exchange

•  Halo data (MPI like)
–  context: stencil evaluation
–  example: Laplacian

 (halo size is 1)
–  data exchange (blue

arrows) required e.g. for
iterative updates

•  CAF halo update

–  uses „pull“ style („push“ also
possible)

–  1-d data distribution: not the
most efficient way

global index
(1 … md) m m+1 m m+1

thread/
image me

thread/
image me+1

local index n-1 n 1 2
(CAF)

md

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

corrected for SC11

real(dp),allocatable :: a_new(:,:)[*]
integer :: me, n, md
me = this_image()
: ! determine n, md
allocate(a_new(md, n)[*])
: ! initialize a
: ! calculate stencil a_new
sync all
if (me > 1) &
 a(:,1) = a_new(:,n-1)[me-1]
if (me < num_images()) &
 a(:,n) = a_new(:,2)[me+1]
sync all
: ! calculate next iteration

Assure stencil is done

Protect against subsequent write

106 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Work sharing (4)
Avoiding the use of halo cells

•  Coarray Fortran
–  interior region stencil is

processed by local accesses
–  boundary region is treated

separately, with remote accesses

•  UPC
–  can execute complete stencil

update on shared array
–  easy to write, but may lose

performance
–  cast to local pointer (for

performance tuning) can only
be done for interior region,
then need to process
boundary region separately
with cross-thread accesses

: ! calculate interior a_new
sync all
! left neighbour image:
if (me > 1) a_new(2:n-1,1) = (&
 a(1:n-2,1) + a(3:n,1) + &
 a(2:n-1,2) + a(2:n-1,n)[me-1] &
 - 4 * a(2:n-1,1)) / (4.0_dk * dx)
! right neighbour image:
: ! (analogous procedure)
sync all
: ! copy a_new to a
: ! calculate next iteration

12/08/09, Author:
R. Bader

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

•  Easier to design (no halo data)
•  But numerics replicated in

communication part of code
•  and compiler optimization and/or

architecture support is required
à see „Programming Styles with PGAS“

107 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Subprogram interface

•  CAF coarray argument

–  corank specification is always
assumed size

–  restrictions to prevent copy-in/
out of coarray data:
 actual argument must be a
coarray
 if dummy is not assumed-shape,
actual must be contiguous
 VALUE attribute prohibited for
dummy argument

•  UPC shared argument

–  subr assumes local size is n
–  cast to local pointer for safety of use

and performance if only local
accesses are required

–  declarations with fixed block size > 1
also possible (default is 1, as usual)

subroutine subr(n,w,x,y)
 integer :: n
 real :: w(n)[n,*] ! Explicit shape
 real :: x(n,*)[*] ! Assumed size
 real :: y(:,:)[*] ! Assumed shape
 :
end subroutine

void subr(int n,
 shared float *w) {
 int i;
 float *wloc;
 wloc = (float *) &w[MYTHREAD];
 for (i=0; i<n; i++){
 … = wloc[i] + …
 }
 upc_barrier;
 // exchange data
 upc_barrier;
 // etc.
}

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

108 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Using the interface

•  CAF

–  a: corank mismatch is
allowed (remapping inside
subroutine)

–  c: assumed shape entity
may be discontiguous

•  UPC

–  cast to cyclic to match the prototype
–  this approach of passing cyclic pointer

and blocksize as arguments is a common
solution to UPC library design.

–  cyclic is “good enough” in most cases
because function can recover actual
layout via pointer arithmetic

–  in this example w[i] aliases x[i][0]

shared [*] float x[THREADS][NDIM]
int main(void) {
 : // initialize x
 upc_barrier;
 subr(NDIM, (shared float *) x);
}

real :: a(ndim)[*], b(ndim,2)[*]
real, allocatable :: c(:,:,:)[:]
allocate(c(10,20,30)[*])

call subr(ndim, a, b, c(1,:,:))

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

x[0][0]
x[0][1]

⁞
Thread 0 Thread 1 Thread 2 Thread 3

x[1][0]
x[1][1]

⁞

x[2][0]
x[2][1]

⁞

x[3][0]
x[3][1]

⁞

w[0] w[1] w[2] w[3]

109 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Factory procedures

•  CAF:
 allocatable dummy argument

–  actual argument: must be
allocatable, with matching type,
rank and corank

–  procedure must be executed
with all images

•  UPC:
 shared pointer function result

–  analogous functionality as for CAF is
illustrated

–  remember: other allocation functions
upc_global_alloc (single thread
distributed entity), upc_alloc
(single thread shared entity) do not
synchronize

subroutine factory(wk, …)
 real, allocatable :: wk(:)[:]
 : ! determine size n
 allocate(wk(n)[*])
 : ! fill wk with data
end subroutine

synchronizes
all images

shared *float factory(…) {
 shared float *wk;
 // determine size n to allocate
 wk = (shared float *)
 upc_all_alloc(THREADS,
 sizeof(float)*n);
 : // fill wk with data
 return wk;
}

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

110 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

CAF: subprogram-local coarrays

•  Restrictions:
–  no automatic coarrays
–  function result cannot be a coarray

 (avoid implicit SYNC ALL)

•  Consequence:
–  require either the SAVE attribute

 allow e.g., invocation by image
subsets:

–  or the ALLOCATABLE attribute:

 requires execution by all images
 allows recursive invocation, as
shown in example (distinct
entities are created)

–  can also combine
ALLOCATABLE with SAVE à
a single entity, no automatic
deallocation on return

subroutine foo(a)
 real :: a(:)[*]
 real, SAVE :: wk_loc(ndim)[*]
 : ! work with wk_loc
end subroutine

storage preserved
throughout execution

if (this_image() < num) then
 call foo(x)
else
 call bar(x)
end if

recursive subroutine rec_process(a)
 real :: a(:)
 real, ALLOCATABLE :: wk_loc(:)[:]

 allocate(wk_loc(n)[*])
 :
 if (.not. done) &
 call rec_process(…)
end subroutine

may have coindexed
accesses to x in
both foo and bar

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

111 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

CAF: Coindexed entities as
actual arguments

•  Assumptions:
–  dummy argument is not a coarray
–  it is modified inside the subprogram
–  therefore, typically copy-in/out will be required

à  an additional synchronization rule
 is needed

•  Note:

–  UPC does not allow
 casting a remote shared
 entity to a private one

execution sequence

p

a q

r
a[q] = …

fo
o

co
m

pl
et

ed

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

112 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Distributed structures (1)

•  Irregular data structures
–  example: binary tree
–  serial type definition:

–  each node contains:

§  data
§  information about

siblings if present

•  Prerequisite
–  ordering relation

•  API:
–  constructor and destructor
–  insertion routine

–  traversal (performs operations
on all tree data)

–  insertion and traversal work
recursively

typedef struct tree {
 struct tree *left;
 struct tree *right;
 Content *data;
};
typedef struct tree Tree;

int lessthan(Content *a, Content *b);

void insert(Tree *this, \
 Content *stuff);

void traverse(Tree *this, \
 Params *op);

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

113 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Distributed Structures (2)

•  Aim:
–  concurrent processing of

distributed binary tree
•  Type definition

–  add a lock component

–  need to do remote copies for
first argument

•  Constructor for Tree object
–  to be called by one thread

–  initialize shared storage for lock

and data components, NULL for
children

–  malloc() of serial code is
replaced by upc_alloc()

typedef struct tree {
 upc_lock_t *lk;
 shared struct tree *left;
 shared struct tree *right;
 shared Content *data;
};

typedef struct tree Tree;

shared Tree *Tree_init() {
 shared Tree *this;
 this = (shared Tree *)
 upc_alloc(sizeof(Tree));
 this->lk = upc_global_lock_alloc();
 this->data = (shared Content *)
 upc_alloc(sizeof(Content));
 this->left = this->right = NULL;
 return this;
}

use regular „serial“
type definition

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

int lessthan(shared Content *a,
 Content *b);

114 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC: One-sided memory block transfer

•  Available for efficiency
–  operate in units of bytes
–  use restricted pointer

arguments
•  Note:

–  CAF array transfers
should do this by default

 src dst

src dst

thread p thread q upc_memcpy() (any thread)

upc_memget() (on q)

upc_memput() (on p)

(char) int

upc_memset()
shared

private

void upc_memcpy(shared void *dst,
 shared const void *src, size_t n);
void upc_memget(void *dst,
 shared const void *src, size_t n);
void upc_memput(shared void *dst,
 void *src, size_t n);
void upc_memset(shared void *dst,
 int c, size_t n);

prototypes from upc.h

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

10/18/09, Author:
R. Bader

115 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Distributed Structures (3)
•  Concurrent population

–  locking ensures race-free processing

–  Invariant to simplify code (at the expense of storage): a node has EITHER
§  2 children and „data“ field is used, OR
§  0 children and „data“ points to allocated, but uninitialized, memory

void insert(shared Tree *this, Content *stuff) {
 upc_lock(this->lk);
 if (this->left) { // Interior node (contains data)
 upc_unlock(this->lk);
 if (lessthan(this->data, stuff)) {
 insert(this->left, stuff);
 } else {
 insert(this->right, stuff);
 }
 } else { // leaf node (no data value yet)
 this->left = Tree_init();
 this->right = Tree_init();
 upc_memput(this->data, stuff, sizeof(Content));
 upc_unlock(this->lk);
 }
}

copy object to
(remote) shared entity

invoke
constructor

color ↔ thread number

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

116 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Distributed Structures (4)

•  Assumption
–  structure is written once or rarely

(locking is expensive)
–  many operations performed on

entries, in access epochs
separated from insert() calls

" to be complete, traverse()
must be executed by all threads
which called insert(), but not
necessarily collectively

•  CAF:
–  cannot easily implement this

concept with coarrays
–  shared objects on one image

only not supported
–  klugey workaround using

pointer components of coarrays
may be possible

•  Generalization
–  implement e.g., tasking concept

in UPC

void traverse(shared Tree *this,
 Params *op) {
if (this->data) { // non-empty node
 if (upc_threadof(this->data)
 == MYTHREAD) {
 process((Content *)this->data, op);
 }
 traverse(this->left, op);
 traverse(this->right, op);
 }
}

guarantees
locality

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Parallel Patterns and

Practices
•  Applications

117 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Third exercise:
Manual reduction and prefix reduction

•  This exercise is required for Fortran programmers
–  UPC programmers could also make use of library function

•  Implement a global reduction facility for extended precision
floating point numbers

–  suggested interface:

•  Try the simplest implementation

–  where do coarrays appear?
•  What do you need to change if you want to calculate a prefix

reduction (caf_prefix_reduce(), same interface) instead?

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
• Exercises

•  Applications

real (dk) function caf_reduce(x, ufun)
 real(dk) intent(in) :: x
 interface
 real(dk) function ufun(a, b)
 real(dk), intent(in) :: a, b
 end function
 end interface
end function

user-provided
function

not a coarray

Reduction

118 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Fourth Exercise:
Heat conduction in 2 dimensions

•  Make a copy of serial programs into your working directory
–  cp ../reduction_heat/heat_serial.c heat_upc.c
–  cp ../reduction/heat/heat_serial.f90 heat_caf.f90

•  Work items for parallelization:
–  domain (data) decomposition (suggestion: use a 1-D decomposition

for simplicity)
–  decide on shared data including halo, or local data with separate

shared 1-D arrays for halo exchange (UPC only: use memory block
transfer functions)

–  need a reduction operation to determine global convergence (use
the code from the previous exercise)

–  halo exchange
–  organization of debug printout routine

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
Ø Advanced synchronization

concepts
• Exercises

•  Applications

119 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Applications, Optimization, and
Hybrid Programming

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications, Optimization..

o  Tools for Data Race Detection
o  NAS parallel benchmarks

-  Optimization strategies in UPC
-  Hybrid concepts for optimization

o  Hybrid programming
-  MPI allowances for hybrid models
-  Hybrid PGAS examples and performance/implementation comparison

o  Hands-on session: optimization

120 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC / Thrille
A Tool for Data Race Detection

•  Observes shared memory accesses and synchronization behavior
•  Can detect potential concurrency bugs in UPC programs
•  Can actively control the schedule of threads to reproduce/fix bugs

•  Run Thrille by adding -thrille=racer as a compiler option
•  Potential races are reported in separate upct.race<num> files

•  Compile with -trailler=tester, select race to reproduce using
environent variable UPCT_RACE_ID=<num> and run

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
•  Applications

Ø Tools

“Efficient Data Race Detection for Distributed Memory Parallel Programs,” SC11 Paper,
Chang-Seo Park, Koushi Sen, Paul Hargrove, and Costin Iancu

121 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

The eight NAS parallel benchmarks (NPBs) have been
written in various languages including hybrid for three

MG Multigrid Approximate the solution to a three-
dimensional discrete Poisson equation using
the V-cycle multigrid method

CG Conjugate
Gradient

Estimate smallest eigenvalue of sparse SPD
matrix using the inverse iteration with the
conjugate gradient method

FT Fast Fourier
Transform

Solve a three-dimensional PDE using the
fast Fourier transform (FFT)

IS Integer Sort Sort small integers using the bucket sort
algorithm

EP Embarrassingly
Parallel

Generate independent Gaussian
random variates using the
Marsaglia polar method

BT
SP
LU

Block Tridiagonal
Scalar Pentadiag
Lower/Upper

Solve a system of PDEs using 3 different
algorithms

MZ

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

122 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

The NPBs in UPC are useful for
studying various PGAS issues

•  Using customized communication to avoid hot-spots
–  UPC Collectives do not support certain useful communication patterns

•  Blocking vs. Non-Blocking (Asynchronous) communication
–  In FT and IS using non-blocking gave significantly worse performance
–  In MG using non-blocking gave small improvement

•  Benefits of message aggregation depends on the arch./interconnect
–  In MG message aggregation is significantly better on Cray XT5 w/

SeaStar2 interconnect, but almost no difference is observable on Sun
Constellation Cluster w/ InfiniBand

•  UPC – Shared Memory Programming studied in FT and IS
–  Less communication but reduced memory utilization

•  Mapping BUPC language-level threads to Pthreads and/or Processes
–  Mix of processes and pthreads often gives the best performance

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

123 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Using customized communication to
avoid hot-spots

•  UPC Collectives might not support certain types of communication
patterns (for example, vector reduction).

•  Customized communication is sometimes necessary!
•  Collective communication naïve approach (FT example):

 for (i=0; i<THREADS; i++)
 upc_memget(… thread i …);

•  Collective communication avoiding hot-spots:
 for (i=0; i<THREADS; i++){
 peer = (MYTHREAD + i) % THREADS;
 upc_memget(… thread peer …);
 }

•  Communication performance difference can exceed 50%
(observed on Carver/NERSC – 2 quad-core Intel Nehalem cluster
with Infiniband Interconnect)

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

124 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Blocking vs. Non-Blocking
(Asynchronous) communication

•  Berkeley UPC allows usage of non-blocking communication (for
efficient computation/communication overlap):
–  upc_handle_t bupc_memget_async(void *dst, shared
const void *src, size_t nbytes);
§  starts communication

–  void bupc_waitsync(upc_handle_t handle);
§  wait for completion

–  Asynchronous versions of memcpy and memput also exist
•  Not always beneficial:

–  Non-blocking communication can inject large number of messages
into the network

–  Lower levels of the network stack (firmware, switches) can employ
internal flow-control and reduce the bandwidth

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

125 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Blocking vs. Non-Blocking
(Asynchronous) communication (cont)

•  FT – no communication/computation overlap possible, but non-
blocking communication can be used:

 bupc_handle_t handles[THREADS];
 for(i = 0; i < THREADS; i++) {
 peer = (MYTHREAD+i) % THREADS;
 handles[i] = bupc_memget_async(… thread peer …);
 }
 for(i=0; i < THREADS; i++)
 bupc_waitsync(handles[i]);

•  Using non-blocking communication, FT (also IS) experiences up to
60% communication performance degradation. For MG we detected
~2% performance increase.

•  Slowdown is caused by a large number of messages injected into
the network (there is no computation that could overlap
communication and reduce the injection rate)

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

126 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

In addition to asynchronous, one can study strided
communication and message aggregation

•  Using strided communication is generally an improvement
–  Again, BUPC has extensions for this purpose

•  Message aggregation reduces the number of messages, but
introduces the packing/unpacking overhead

•  Message aggregation increases programming effort
•  Example:

 Fine-grained communication
 Thread A → Thread B
 for (i=0; i<n1; i++)
 upc_memput(&k[i],
 &u[i],
 n2 * sizeof(double));

Message Aggregation
Thread A:
 buff = pack(u);
 upc_memput(&k[0],
 &buff,
 n1*n2*sizeof(double));
 upc_barrier;

Thread B:

upc_barrier;
unpack(k);

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

127 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

 MG message aggregation is significantly
better on Cray SeaStar2 interconnect

0
1
2
3
4
5
6
7
8

MG UPC MG UPC
Async

MG UPC
Async +

Strided Comm

MG UPC
Async +
Message

Aggregation

Ex
ec

ut
io

n
Ti

m
e

(s
)

MG Optimizations - Cray XT 64 Cores - 8
Nodes, Class C

Communication

Computation

•  MG message
aggregation
had almost no
difference on
Ranger
InfiniBand
interconnect

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

128 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Class D NPBs have been run recently on two
PF/s class machines at LRZ and LBL

Property SuperMuc Hopper
Peak Performance 3.19 PF/s (#4) 1.28 PF/s (#16)

Number of Cores 147,456 153,216

Clock Speed 2.7 (3.5 Turbo) GHz 2.1 GHz

Interconnect Infiniband FDR10 Gemini in 3D torus

Total Memory 288 TBytes 217 TBytes

MG.D 1024 cores
Machine and Complier

Speed for 5
runs

No
Flags

Message
Aggregation

Message Agg
+ Strided Com

Hopper with Cray UPC Median Gops/s 519.52 533.41 (+ 3%) 544.86 (+ 5%)

Hopper with Cray UPC Avg Gops/s 519.22 527.98 (+ 2%) 546.19 (+ 5%)

Hopper with Cray UPC SD Gops/s 3.55 12.93 6.61
SuperMUC with Berkeley UPC Median Gops/s 879.8 1056.4 (+20%) 1026.5 (+ 17%)

SuperMUC with Berkeley UPC Avg Gops/s 891.70 1034.5 (+16%) 1041.4 (+ 17%)

SuperMUC with Berkeley UPC SD Gops/s 32.6 54.2 72.4

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

129 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

NPBs can used to study scalability as well as
machine and complier effects

256 512 1024 2048

160

80

40

20

Number of cores

R
un

 T
im

e
(s

)
LU.D NPB

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

130 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

UPC – Hierarchical Shared Memory Programming
reduces communication time

•  UPC designed for pure distributed
or pure shared memory systems

•  UPC capable of exploiting shared
memory (OMP-like) programming
style within a node (thus avoiding
some explicit communication)

Master
thread

Parallel region –
worker threads

Master
thread

OMP – Shared
Memory style

MPI – Explicit
Communication

All-To-All
Communication

•  Drawback: reduced memory utilization (large fraction unusable)
•  In the UPC hierarchical model, only the shared heap allocated by the
 master thread is used
•  In BUPC all threads have equally sized shared-heaps
•  In any UPC upc_{all,global}_alloc() allocate across all threads
•  Can result in large fraction of node memory potentially unusable
•  Careful data placement capable of increasing memory utilization
•  Berkeley is working on enabling uneven heap distribution in BUPC

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

131 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Use of UPC shared memory reduced computation
time by removing a transpose operation in FT

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

OMP MPI UPC -
Explicit
Comm.

UPC -
Shared
Mem.

OMP MPI UPC -
Explicit
Comm.

UPC -
Shared
Mem.

IS FT

UPC,MPI Execution Time Normalized to OMP, 16 Cores AMD

comm

comp

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

132 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

BUPC language-level threads can be
mapped to Pthreads and/or Processes

•  Pthreads – shared memory communication through shared
address space

•  Processes – shared memory communication through shared
memory segments (POSIX, SysV or mmap(file)) called PSHM

•  NPBs performance depends on Pthreads/Processes
–  Pthreads share one network endpoint; PSHM has network

endpoint per process
–  Due to sharing of one network endpoint, pthreads experience

messaging contention, resulting in throttled injection rate
–  Processes (PSHM) can inject messages into the network faster

(but large messages count may decrease effective bandwidth)
–  PSHM avoids contention overhead when interacting with external

libraries/drivers
–  Contention and injection rate compete for dominance

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

133 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Mix of processes and pthreads is often required
for achieving the best performance

0
0.2
0.4
0.6
0.8

1
1.2
1.4

PSHM Hybrid (1
Proc. Per
socket)

Pthreads PSHM Hybrid (1
Proc. Per
socket)

Pthreads PSHM Hybrid (1
Proc. Per
socket)

Pthreads

IS Class C MG Class C FT Class C

Ti
m

e
N

or
m

al
iz

ed
 to

 P
th

re
ad

s

Ranger (AMD 4 Sockets x 4 Cores per node) - Performance Normalized
to Pthreads on 128 Cores

Coarse-Grained Comm. Fine-Grained Comm. Computation

For FT the hybrid approach (1 process per socket and
pthreads within a socket) is best and is a “reasonable”
approach for the other NPBs

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

134 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Some NAS Parallel Benchmarks have been written in
multi-zone hybrid versions (currently with OpenMP)

• Multi-zone versions of the NPSs
LU,SP, and BT are available from:

www.nas.nasa.gov/Resources/Software/software.html

MPI/OpenMP Version

Time step Sequential

Inter-zones MPI Processes

Exchange boundaries Call MPI

Intra zones OpenMP

Figure adapted from Gabriele Jost, et al., ParCFD2009 Tutorial

135 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

•  BT-MZ: (Block-tridiagonal Solver)
–  Size of the zones varies widely:

•  large/small about 20
•  requires multi-level parallelism to achieve a good load-balance

•  LU-MZ: (Lower-Upper Symmetric Gauss Seidel Solver)
–  Size of the zones identical:

•  no load-balancing required
•  limited parallelism on outer level

•  SP-MZ: (Scalar-Pentadiagonal Solver)
–  Size of zones identical

•  no load-balancing required

Hybrid coding can yield improved
performance for some benchmarks

Load-­‐balanced	
 on	
 MPI	

level:	
 Pure	
 MPI	
 should	

perform	
 best	

Pure	
 MPI:	
 Load-­‐
balancing	
 problems!	

Good	
 candidate	
 for	

MPI+OpenMP	

Limited	
 MPI	

Parallelism:	

à	
 MPI+OpenMP	

increases	

Parallelism	

Adapted from Gabriele Jost, et al., ParCFD2009 Tutorial

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

136 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

PGAS languages can also be
combined with MPI for hybrid

•  MPI is designed to allow coexistence with other parallel
programming paradigms and uses the same SPMD model:

 è MPI and UPC or Coarrays can exist together in a program

•  When mixing communications models, each will have its own

progress mechanism and associated rules/assumptions

•  Deadlocks can happen if some processes are executing blocking
MPI operations while others are in “PGAS communication mode”
and waiting for images (e.g., sync all)

 è "MPI phase" should end with MPI barrier, and a ”CAF phase" should
end with a CAF barrier to avoid communication deadlocks

09/16/10, Author:
Robert Preissl

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

137 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

There are differences between
Rice and Cray CAF

•  CAF is becoming part of Fortran standard

•  MPI indexes its processors from 0 to “number-of-processes – 1”

–  Cray CAF indexes images from 1 to “num_images()”.

–  Rice CAF indexes from 0 to “num_images() - 1”)

•  Mixing OpenMP and CAF only works with Cray CAF
 - Rice CAF interoperability still under development
 - OpenMP threads can execute CAF PUT/GET operations

09/16/10, Author:
Robert Preissl

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

138 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

We give one example of hybrid
MPI and CAF interoperability

program MPI_and_CAF

 integer :: ntasks,ierr,rank,size
 integer,pointer,dimension(:) :: array

 call MPI_Init(ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD,ntasks,ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

 size = 1000
 allocate(array(1:size))
 array = 1

 call mpi_routine1(array)

 call MPI_BARRIER(MPI_COMM_WORLD,ierr)

 call caf_routine(rank,size,array)

 call MPI_BARRIER(MPI_COMM_WORLD,ierr)

 call mpi_routine2(array)

 deallocate(array)
 call MPI_FINALIZE(ierr)

end program MPI_and_CAF

subroutine caf_routine(mpi_rank,size,mpi_array)

 integer :: mpi_rank,size,world_rank,world_size
 integer,dimension(size) :: mpi_array
 integer,allocatable :: co_array(:)[:]

 SYNC ALL ! Full barrier; wait for all images

 world_rank = THIS_IMAGE() ! equal to mpi_rank
 world_size = NUM_IMAGES()

 … ! some computation on mpi_array and co_array

 SYNC ALL

end subroutine caf_routine

main.F90

caf.F90

building for Hopper/Franklin @ NERSC:
module swap PrgEnv-pgi PrgEnv-cray
ftn –static –O3 –h caf caf.F90
ftn –static –O3 mpi.F90
ftn –static –O3 main.F90
ftn –static –o exec caf.o mpi.o main.o

subroutine mpi_routine1…
subroutine mpi_routine2 …

mpi.F90

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

139 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Hybrid MPI and UPC is still under
development on Cray platforms

•  Exercise is to download and compare three hybrid MPI-UPC

versions of dot product
•  Works on certain clusters but not yet on XT5 test platform

•  The three coding examples vary the level of nesting and number of
instances of both models
•  Flat model: provides a non-nested common MPI and UPC execution

where each process is a part of both the MPI and the UPC execution
•  Nested-funneled model: provides an operational mode where only the

master process per group gets an MPI rank and can make MPI calls
•  Nested-multiple model: provides a mode where every UPC process

gets its own MPI rank and can make MPI calls independently.

Dot product coding from “Hybrid Parallel Programming with MPI and Unified Parallel C”
by James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and Rajeev Thakur

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

140 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Exercise: Download, run, and time a
hybrid MPI/CAF code example

•  Code is the communication intensive routine of a plasma simulation

•  The simulation follows the trajectories of charged particles in a torus

•  Due to the parallel domain decomposition of the torus, a huge
number of particles have to be shifted at every iteration step from one
domain to another using MPI

• Typically, 10% of each process’ particles are sent to neighbor domain; 1%
goes to “rank+2” and only a small fraction further.

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

141 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Compare differences in reduced code MPI and MPI-
CAF benchmarks (coding/performance)

•  MPI benchmark simulates the communication behavior of the code

•  Iterates through an array of numbers in each domain with numbers
that are a multiple of x (e.g. 10) being sent to “rank+1” and numbers
which are a multiple of y (e.g. 100) being sent to “rank+2”

•  The MPI-CAF benchmark follows exactly the algorithm but has been
improved exploiting one-sided communication and image control
techniques provided by CAF

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

142 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

The MPI version of the shifter benchmark

program MPI_CAF_ShifterBenchmark
 ……

 call mpi_benchmark(..)

 call MPI_BARRIER(MPI_COMM_WORLD,ierr)

 call caf_benchmark(..)

end program MPI_CAF_ShifterBenchmark

subroutine mpi_benchmark()

 100: outer_loop = outer_loop + 1
 do m=m0,array_size ! use modulo operator on x and y for outer_loop==1
 if(is_shifted(array(m))) then ! and just on y for outer_loop==2
 send_counter = send_counter + 1
 send_vector(send_counter) = m ! store position of sends
 endif

 MPI_Allreduce(send_counter,result) ! Stop when no numbers are sent
 if(result == 0) exit ! by all processors

 do i=1, send_counter ! pack the send array
 send_array(i) = array(send_vector(i))
 enddo

 fill_remaining_holes(array)

 MPI_Send_Recv(send_counter,recv_counter) ! send & recv new numbers
 MPI_Send_Recv(send_array, recv_array,..)

 do i=1, recv_counter ! add the received numbers to local array
 array(a+i)=recv_array(i)
 enddo
 array_size = array_size - send_counter + recv_counter
 m0 = .. ! adapt array size, and the array starting position of next iteration
 enddo

end subroutine mpi_benchmark

main.F90

caf.F90

In order to precisely compare the performance of the MPI code vs. the CAF
implementation, the MPI and CAF algorithm have to be in the same executable.

caf_benchmark programming hints:

-  use a multidimensional send-buffer (i.e., for each
 possible destination fill a send-vector)

-  this send-vector has a fixed length := s

-  if length of send-buffer(dest) == s then fire up a
 message to image “dest” and fill its receive queue

-  for filling the 1D receive queue on a remote image
 use image control statements to ensure
 correctness (e.g. locks, critical sections, etc.)

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization

concepts
Ø Applications

143 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Appendix

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Hybrid Programming
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

https://fs.hlrs.de/projects/rabenseifner/publ/SC2012-PGAS.html

o  Additional material on exercises
o  Abstract
o  Presenters
o  Literature

144 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

README – UPC
on Cray XE…: UPC / PGI

Initialization: module load bupc

Interactive PBS shell:
In the SC tutorial
 qsub -I -q special -lmppwidth=24,mppnppn=24, \
 walltime=00:30:00 -V

Again to the working directory:
 cd $PBS_O_WORKDIR

Compilation:
 upcc -O -T=4 -o myprog myprog.c

Parallel Execution:
 upcrun -n 1 -cpus-per-node 24 ./myprog
 upcrun -n 2 -cpus-per-node 24 ./myprog
 upcrun -n 4 -cpus-per-node 24 ./myprog

Exercise 2

Exercise 3/4

Exercise 1

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

145 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

README – UPC
on Cray XE…: Cray UPC

Initialization: module switch PrgEnv-pgi PrgEnv-cray

Interactive PBS shell:
In the SC tutorial
 qsub -I -q special -lmppwidth=24,mppnppn=24, \
 walltime=00:30:00 -V

Again to the working directory:
 cd $PBS_O_WORKDIR

Compilation:
 cc -h upc -o myprog myprog.c

Parallel Execution:
 aprun -n 1 -N 1 ./myprog
 aprun -n 2 -N 2 ./myprog
 aprun -n 4 -N 4 ./myprog

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

Exercise 2

Exercise 3/4

Exercise 1

146 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

README – UPC
on Cray XE…: Cray Fortran

Initialization: module switch PrgEnv-pgi PrgEnv-cray

Interactive PBS shell:
In the SC tutorial
 qsub -I -q special -lmppwidth=24,mppnppn=24, \
 walltime=00:30:00 -V

Again to the working directory:
 cd $PBS_O_WORKDIR

Compilation:
 ftn –e m –h caf -o myprog myprog.f90

Parallel Execution:
 aprun -n 1 -N 1 ./myprog
 aprun -n 2 -N 2 ./myprog
 aprun -n 4 -N 4 ./myprog

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

Exercise 2

Exercise 3/4

Exercise 1

147 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

hello_upc_1.c and
hello_caf_1.f90

#include <upc.h>
#include <stdio.h>
int main(int argc, char** argv)
{
 if (MYTHREAD == 0) printf("hello world\n");
 printf("I am thread number %d of %d threads\n",
 MYTHREAD, THREADS);
 return 0;
}

program hello
implicit none
integer :: myrank, numprocs
myrank = THIS_IMAGE()
numprocs = NUM_IMAGES()
if (myrank == 1) print *, 'hello world'
write (*,*) 'I am image number',myrank, &
 & ' of ',numprocs,' images'
end program hello Exercise 1

05/19/09, Author:
Rolf Rabenseifner

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

148 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Dynamic entities:
triangular.f90

•  Matrix object declaration and
initialization code

•  Solution programs
available as

–  ../triangular_matrix/
solutions/triangular.f90
(Fortran)

–  ../triangular_matrix/
solutions/triangular.upc
(UPC)

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

type(tri_matrix), allocatable :: a(:)[:]
:
me = this_image() ; nproc = num_images()
rows_per_proc = n / nproc
if (mod(n, nproc) > 0) &
 rows_per_proc = rows_per_proc + 1
allocate(a(rows_per_proc)[*])
! initialize matrix A(i, j) = i + j
i_local = 1
n_elem = 0
do i = me, n, nproc
 allocate(a(i_local)%row(n - i + 1))
 do j = 1, n - i + 1
 a(i_local)%row(j) = real(i) + real(j)
 end do
 n_elem = n_elem + n - i + 1
 i_local = i_local + 1
end do

Exercise 2

149 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Manual reduction:
mod_reduction_simple.f90

•  Singleton coarray g as
module variable

•  Prefix reduction
–  pipelined execution („John Reid‘s ladder“)

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

real(dk) function &
 caf_reduce(x, ufun)
 real(dk), intent(in) :: x
 procedure(rf) :: ufun

 if (this_image() == 1) then
 g = x
 sync images(*)
 else
 sync images(1)
 critical
 g[1] = ufun(x,g[1])
 end critical
 end if
 sync all
 caf_reduce = g[1]
 sync all ! protect against
 ! subsequent write of g
 end function caf_reduce

Exercise 3

real(dk) function &
 caf_prefix_reduce(x, ufun)
 real(dk), intent(in) :: x
 procedure(rf) :: ufun
 integer :: me
 me = this_image()
 if (me == 1) then
 g = x
 caf_prefix_reduce = x
 else
 sync images ((/me,me-1/))
 g = ufun(x,g[me-1])
 caf_prefix_reduce = g
 end if
 if (me < num_images()) &
 sync images ((/me,me+1/))
 sync all ! protect against
 ! subsequent write of g on 1
end function caf_prefix_reduce

150 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Manual reduction (2)

•  Programs from previous
slide

–  are not the most efficient
solutions

–  alternative: „butterfly
pattern“

•  Power-of-two version
–  illustrative code based on

tutorial material by Bob Numrich

•  Files for study:
–  reduction_heat/solutions/mod_reduction*

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

real(dk) function caf_reduce(x, ufun)
 real(dk), intent(in) :: x
 procedure(rf) :: ufun
 real(kind=8) :: work
 integer :: n,bit,i,mypal,dim,me
 : ! dim is log2(num_images())
 : ! dim == 0 trivial
 g = x
 bit = 1; me = this_image(g,1) - 1
 do i=1, dim
 mypal = xor(me,bit)
 bit = shiftl(bit,1)
 sync all
 work = g[mypal+1]
 sync all
 g = ufun(g,work)
 end do
 caf_reduce = g
 sync all ! against subsequent write on g
end function

i =

1

2

3

real(dk) :: g[*]
! global variable

151 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Appendix: Abstract

PGAS (Partitioned Global Address Space) languages offer both an
alternative to traditional parallelization approaches (MPI and OpenMP), and
the possibility of being combined with MPI for a multicore Applications
model. In this tutorial we cover PGAS concepts and two commonly used
PGAS languages, Coarray Fortran (CAF, as specified in the Fortran
standard) and the extension to the C standard, Unified Parallel C (UPC).
Exercises exercises to illustrate important concepts are interspersed with
the lectures. Attendees will be paired in groups of two to accommodate
attendees without laptops. Basic PGAS features, syntax for data
distribution, intrinsic functions and synchronization primitives are discussed.
Additional topics include parallel programming patterns, future extensions
of both CAF and UPC, and hybrid programming. In the hybrid programming
section we show how to combine PGAS languages with MPI, and contrast
this approach to combining OpenMP with MPI. Real applications using
hybrid models are given.

05//10, Author:
Alice Koniges

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

152 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Presenters

•  Dr. Alice Koniges is a Physicist and Computer Scientist at the National Energy Research
Scientific Computing Center (NERSC) at the Berkeley Lab. Previous to working at the
Berkeley Lab, she held various positions at the Lawrence Livermore National Laboratory,
including management of the Lab’s institutional computing. She recently led the effort to
develop a new code that is used predict the impacts of target shrapnel and debris on the
operation of the National Ignition Facility (NIF), the world’s most powerful laser. Her
current research interests include parallel computing and benchmarking, arbitrary
Lagrange Eulerian methods for time-dependent PDE’s, and applications in plasma physics
and material science. She was the first woman to receive a PhD in Applied and
Computational Mathematics at Princeton University and also has MSE and MA degrees
from Princeton and a BA in Applied Mechanics from the University of California, San
Diego. She is editor and lead author of the book “Industrial Strength Parallel
Computing,” (Morgan Kaufmann Publishers 2000) and has published more than 80
refereed technical papers.

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

153 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Presenters

•  Dr. Katherine Yelick is the Director of the National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley National Laboratory and a Professor of
Electrical Engineering and Computer Sciences at the University of California at Berkeley.
She is the author or co-author of two books and more than 100 refereed technical papers
on parallel languages, compilers, algorithms, libraries, architecture, and storage. She co-
invented the UPC and Titanium languages and demonstrated their applicability across
architectures through the use of novel runtime and compilation methods. She also co-
developed techniques for self-tuning numerical libraries, including the first self-tuned
library for sparse matrix kernels which automatically adapt the code to properties of the
matrix structure and machine. Her work includes performance analysis and modeling as
well as optimization techniques for memory hierarchies, multicore processors,
communication libraries, and processor accelerators. She has worked with
interdisciplinary teams on application scaling, and her own applications work includes
parallelization of a model for blood flow in the heart. She earned her Ph.D. in Electrical
Engineering and Computer Science from MIT and has been a professor of Electrical
Engineering and Computer Sciences at UC Berkeley since 1991 with a joint research
appointment at Berkeley Lab since 1996. She has received multiple research and teaching
awards and is a member of the California Council on Science and Technology and a
member of the National Academies committee on Sustaining Growth in Computing
Performance.

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

154 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Presenters

•  Dr. Rolf Rabenseifner studied mathematics and physics at the University of Stuttgart.
Since 1984, he has worked at the High-Performance Computing-Center Stuttgart (HLRS).
He led the projects DFN-RPC, a remote procedure call tool, and MPI-GLUE, the first
metacomputing MPI combining different vendor's MPIs without losses to full MPI
functionality. In his dissertation, he developed a controlled logical clock as global time for
trace-based profiling of parallel and distributed applications. Since 1996, he has been a
member of the MPI-2 Forum and since December 2007 he is in the steering committee of
the MPI-3 Forum. From January to April 1999, he was an invited researcher at the Center
for High-Performance Computing at Dresden University of Technology. Currently, he is
head of Parallel Computing - Training and Application Services at HLRS. He is involved in
MPI profiling and benchmarking e.g., in the HPC Challenge Benchmark Suite. In recent
projects, he studied parallel I/O, parallel programming models for clusters of SMP nodes,
and optimization of MPI collective routines. In workshops and summer schools, he teaches
parallel programming models in many universities and labs in Germany.

–  Homepage: http://www.hlrs.de/people/rabenseifner/
–  List of publications: https://fs.hlrs.de//projects/rabenseifner/publ/
–  International teaching: https://fs.hlrs.de//projects/rabenseifner/publ/#tutorials

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

155 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Presenters

•  Dr. Reinhold Bader studied physics and mathematics at the Ludwigs-Maximilians
University in Munich, completing his studies with a PhD in theoretical solid state physics in
1998. Since the beginning of 1999, he has worked at Leibniz Supercomputing Centre
(LRZ) as a member of the scientific staff, being involved in HPC user support,
procurements of new systems, benchmarking of prototypes in the context of the PRACE
project, courses for parallel programming, and configuration management for the HPC
systems deployed at LRZ. As a member of the German delegation to WG5, the
international Fortran Standards Committee, he also takes part in the discussions on further
development of the Fortran language. He has published a number of contributions to
ACMs Fortran Forum and is responsible for development and maintenance of the Fortran
interface to the GNU Scientific Library.
 Sample of national teaching:

–  LRZ Munich / RRZE Erlangen 2001-2011 (5 days) - G. Hager, R. Bader et al: Parallel
Programming and Optimization on High Performance Systems

–  LRZ Munich (2009-2011) (5 days) - R. Bader: Advanced Fortran topics - object-
oriented programming, design patterns, coarrays and C interoperability

–  LRZ Munich (2010) (1 day) - A. Block and R. Bader: PGAS programming with coarray
Fortran and UPC

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

156 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Presenters

•  Dr. David Eder is a computational physicist and group leader at the Lawrence Livermore
National Laboratory in California. He has extensive experience with application codes for
the study of multiphysics problems. His latest endeavors include ALE (Arbitrary Lagrange
Eulerian) on unstructured and block-structured grids for simulations that span many orders
of magnitude. He was awarded a research prize in 2000 for use of advanced codes to
design the National Ignition Facility 192 beam laser currently under construction. He has a
PhD in Astrophysics from Princeton University and a BS in Mathematics and Physics from
the Univ. of Colorado. He has published approximately 80 research papers.

•  Basic PGAS concepts
•  UPC and CAF basic syntax
•  Advanced synchronization
•  Applications
Ø Appendix

● Exercises ● Presenters
● Abstract ● Literature

157 SC12 Tutorial © Koniges, Yelick, Rabenseifner, Bader, Eder, Hargrove & others

Literature

•  UPC references
–  UPC Language specification, by the UPC Consortium:

http://upc.gwu.edu/docs/upc_specs_1.2.pdf
–  UPC Manual, by Sébastien Chauvin, Proshanta Saha, François Cantonnet,

Smita Annareddy, Tarek El-Ghazawi, May 2005
http://upc.gwu.edu/downloads/Manual-1.2.pdf

–  UPC Distributed Memory Programming, by Tarek El-Ghazawi, Bill Carlson,
Thomas Sterling, and Katherine Yelick, Wiley & Sons, June 2005

•  Coarray references
–  Coarrays in the next Fortran Standard, by John Reid

WG5 paper N1824, April 21, 2010,
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

–  Fortran 2008 draft international standard
–  Coarray compendium, by Andy Vaught, http://www.g95.org/compendium.pdf

